Translational studies benefit from experimental designs where laboratory organisms use human-relevant behaviors. One such behavior is decision-making, however studying complex decision-making in rodents is labor-intensive and typically restricted to two levels of cost/reward. We design a fully automated, inexpensive, high-throughput framework to study decision-making across multiple levels of rewards and costs: the REward-COst in Rodent Decision-making (RECORD) system. RECORD integrates three components: 1) 3D-printed arenas, 2) custom electronic hardware, and 3) software. We validated four behavioral protocols without employing any food or water restriction, highlighting the versatility of our system. RECORD data exposes heterogeneity in decision-making both within and across individuals that is quantifiably constrained. Using oxycodone self-administration and alcohol-consumption as test cases, we reveal how analytic approaches that incorporate behavioral heterogeneity are sensitive to detecting perturbations in decision-making. RECORD is a powerful approach to studying decision-making in rodents, with features that facilitate translational studies of decision-making in psychiatric disorders.
Deficits in decision making are at the heart of many psychiatric diseases, such as substance abuse disorders and attention deficit hyperactivity disorder. Consequently, rodent models of decision making are germane to understanding the neural mechanisms underlying adaptive choice behavior and how such mechanisms can become compromised in pathological conditions. A critical factor that must be integrated with reward value to ensure optimal decision making is the occurrence of consequences, which can differ based on probability (risk of punishment) and temporal contiguity (delayed punishment). This article will focus on two models of decision making that involve explicit punishment, both of which recapitulate different aspects of consequences during human decision making. We will discuss each behavioral protocol, the parameters to consider when designing an experiment, and finally how such animal models can be utilized in studies of psychiatric disease. © 2020 Wiley Periodicals LLC.
- PAR ID:
- 10173602
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols in Neuroscience
- Volume:
- 93
- Issue:
- 1
- ISSN:
- 1934-8584
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Our understanding of programmed cell death 1 (PD‐1) biology is limited due to technical difficulties in establishing reproducible, yet simple, in vitro assays to study PD‐1 signaling in primary human T cells. The protocols in this article were refined to test the consequences of PD‐1 ligation on short‐term T cell signaling, long‐term T cell function, and the structural consequences of PD‐1 ligation with PD‐1 ligands. Basic Protocol 1 addresses the need for a robust and reproducible short‐term assay to examine the signaling cascade triggered by PD‐1. We describe a phospho flow cytometry method to determine how PD‐1 ligation alters the level of CD3ζ phosphorylation on Tyr142, which can be easily applied to other proximal signaling proteins. Basic Protocol 2 describes a plate‐bound assay that is useful to examine the long‐term consequences of PD‐1 ligation such as cytokine production and T cell proliferation. Complementary to that, Basic Protocol 3 describes an in vitro superantigen‐based assay to evaluate T cell responses to therapeutic agents targeting the PD‐1/PD‐L axis, as well as immune synapse formation in the presence of PD‐1 engagement. Finally, in Basic Protocol 4 we outline a tetramer‐based method useful to interrogate the quality of PD‐1/PD‐L interactions. These protocols can be easily adapted for mouse studies and other inhibitory receptors. They provide a valuable resource to investigate PD‐1 signaling in T cells and the functional consequences of various PD‐1‐based therapeutics on T cell responses. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : PD‐1 crosslinking assay to determine CD3ζ phosphorylation in primary human T cellsBasic Protocol 2 : Plate‐based ligand binding assay to study PD‐1 function in human T cellsSupport Protocol 1 : T cell proliferation assay in the presence of PD‐1 ligationBasic Protocol 3 : In vitro APC/T cell co‐culture system to evaluate therapeutic interventions targeting the PD‐1/PD‐L1 axisSupport Protocol 2 : Microscopy‐based approach to evaluate the consequences of PD‐1 ligation on immune synapse formationBasic Protocol 4 : Tetramer‐based approach to study PD‐1/PD‐L1 interactions -
Abstract In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus‐specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : LCMV infection routes in miceSupport Protocol 1 : Preparation of LCMV stocksASSAYS TO MEASURE LCMV TITERS Support Protocol 2 : Plaque assaySupport Protocol 3 : Immunofluorescence focus assay (IFA) to measure LCMV titerMEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION Basic Protocol 2 : Triple tetramer staining for detection of LCMV‐specific CD8 T cellsBasic Protocol 3 : Intracellular cytokine staining (ICS) for detection of LCMV‐specific T cellsBasic Protocol 4 : Enumeration of direct ex vivo LCMV‐specific antibody‐secreting cells (ASC)Basic Protocol 5 : Limiting dilution assay (LDA) for detection of LCMV‐specific memory B cellsBasic Protocol 6 : ELISA for quantification of LCMV‐specific IgG antibodySupport Protocol 4 : Preparation of splenic lymphocytesSupport Protocol 5 : Making BHK21‐LCMV lysateBasic Protocol 7 : Challenge modelsTRANSGENIC MODELS Basic Protocol 8 : Transfer of P14 cells to interrogate the role of IFN‐I on CD8 T cell responsesBasic Protocol 9 : Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge -
Abstract Down syndrome (DS) is the most frequent genetic cause of intellectual disability, characterized by alterations in different behavioral symptom domains: neurodevelopment, motor behavior, and cognition. As mouse models have the potential to generate data regarding the neurological basis for the specific behavioral profile of DS, and may indicate pharmacological treatments with the potential to affect their behavioral phenotype, it is important to be able to assess disease‐relevant behavioral traits in animal models in order to provide biological plausibility to the potential findings. The field is at a juncture that requires assessments that may effectively translate the findings acquired in mouse models to humans with DS. In this article, behavioral tests are described that are relevant to the domains affected in DS. A neurodevelopmental behavioral screen, the balance beam test, and the Multivariate Concentric Square Field test to assess multiple behavioral phenotypes and locomotion are described, discussing the ways to merge these findings to more fully understand cognitive strengths and weaknesses in this population. New directions for approaches to cognitive assessment in mice and humans are discussed. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Preweaning neurodevelopmental batteryBasic Protocol 2 : Balance beamBasic Protocol 3 : Multivariate concentric square field test (MCSF) -
Probabilistic reinforcement learning (RL) tasks assay how individuals make decisions under uncertainty. The use of internal models (model-based) or direct learning from experiences (model-free), and the degree of choice stochasticity across alternatives (i.e., random exploration), can all be influenced by the state space of the decision-making task. There is considerable individual variation in the balance between model-based and model-free control during decision-making, and this balance is affected by incentive motivation. The effect of variable reward incentives on the arbitration between model-based and model-free learning remains understudied, and individual differences in neural signatures and cognitive traits that moderate the effect of reward on model-free/model-based control are unknown. Here we combined a two-stage decision-making task utilizing differing reward incentives with computational modeling, neuropsychological tests, and neuroimaging to address these questions. Results showed the prospect of greater reward decreased exploration of alternative options and increased the balance towards model-based learning. These behavioral effects were replicated across two independent datasets including both sexes. Individual differences in processing speed and analytical thinking style affected how reward altered the dependence on both systems. Using a systems neuroscience-inspired approach to resting-state functional connectivity, we found reduced random exploration of the options during the first stage of our task under high- relative to low-incentives was predicted by increased cross-network coupling between ventral and dorsal RL circuitry. These findings suggest that integrity of functional connections between stimulus valuation (ventral) and action valuation (dorsal) RL networks is associated with changes in the balance between explore-exploit decisions under changing reward incentives.
Significance statement Humans and other organisms are motivated to explore different goals and goal-directed actions to maximize earned rewards. Exploring choice alternatives helps to drive reinforcement learning (RL), and RL policies are adjusted in response to changes in the reward environment. The cognitive and neural changes involved in RL policy shifts under changing incentive structures in humans are underspecified. We found that faster processing speed and a more analytic thinking style determine the extent to which individuals modulate RL policies under high versus low incentives. Critically, greater functional connectivity between goal valuation (ventral) and goal-directed action (dorsal) RL neural circuits was associated with greater inflexibility and reduced random exploration under high incentives.