skip to main content


Title: cuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression Framework for Scientific Data
Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.  more » « less
Award ID(s):
2034169 1948447 2003624 2042084 2003709 1633608 2303820 2303064
NSF-PAR ID:
10173692
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The 29th International Conference on Parallel Architectures and Compilation Techniques (PACT 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of 
    more » « less
  2. More and more HPC applications require fast and effective compression techniques to handle large volumes of data in storage and transmission. Not only do these applications need to compress the data effectively during simulation, but they also need to perform decompression efficiently for post hoc analysis. SZ is an error-bounded lossy compressor for scientific data, and cuSZ is a version of SZ designed to take advantage of the GPU's power. At present, cuSZ's compression performance has been optimized significantly while its decompression still suffers considerably lower performance because of its sophisticated lossless compression step---a customized Huffman decoding. In this work, we aim to significantly improve the Huffman decoding performance for cuSZ, thus improving the overall decompression performance in turn. To this end, we first investigate two state-of-the-art GPU Huffman decoders in depth. Then, we propose a deep architectural optimization for both algorithms. Specifically, we take full advantage of CUDA GPU architectures by using shared memory on decoding/writing phases, online tuning the amount of shared memory to use, improving memory access patterns, and reducing warp divergence. Finally, we evaluate our optimized decoders on an Nvidia V100 GPU using eight representative scientific datasets. Our new decoding solution obtains an average speedup of 3.64X over cuSZ's Huffman decoder and improves its overall decompression performance by 2.43X on average. 
    more » « less
  3. Today’s large-scale scientific applications running on high-performance computing (HPC) systems generate vast data volumes. Thus, data compression is becoming a critical technique to mitigate the storage burden and data-movement cost. However, existing lossy compressors for scientific data cannot achieve a high compression ratio and throughput simultaneously, hindering their adoption in many applications requiring fast compression, such as in-memory compression. To this end, in this work, we develop a fast and high-ratio error-bounded lossy compressor on GPUs for scientific data (called FZ-GPU). Specifically, we first design a new compression pipeline that consists of fully parallelized quantization, bitshuffle, and our newly designed fast encoding. Then, we propose a series of deep architectural optimizations for each kernel in the pipeline to take full advantage of CUDA architectures. We propose a warp-level optimization to avoid data conflicts for bit-wise operations in bitshuffle, maximize shared memory utilization, and eliminate unnecessary data movements by fusing different compression kernels. Finally, we evaluate FZ-GPU on two NVIDIA GPUs (i.e., A100 and RTX A4000) using six representative scientific datasets from SDRBench. Results on the A100 GPU show that FZ-GPU achieves an average speedup of 4.2× over cuSZ and an average speedup of 37.0× over a multi-threaded CPU implementation of our algorithm under the same error bound. FZ-GPU also achieves an average speedup of 2.3× and an average compression ratio improvement of 2.0× over cuZFP under the same data distortion. 
    more » « less
  4. Today’s scientific high-performance computing applications and advanced instruments are producing vast volumes of data across a wide range of domains, which impose a serious burden on data transfer and storage. Error-bounded lossy compression has been developed and widely used in the scientific community because it not only can significantly reduce the data volumes but also can strictly control the data distortion based on the user-specified error bound. Existing lossy compressors, however, cannot offer ultrafast compression speed, which is highly demanded by numerous applications or use cases (such as in-memory compression and online instrument data compression). In this paper we propose a novel ultrafast error-bounded lossy compressor that can obtain fairly high compression performance on both CPUs and GPUs and with reasonably high compression ratios. The key contributions are threefold. (1) We propose a generic error-bounded lossy compression framework—called SZx—that achieves ultrafast performance through its novel design comprising only lightweight operations such as bitwise and addition/subtraction operations, while still keeping a high compression ratio. (2) We implement SZx on both CPUs and GPUs and optimize the performance according to their architectures. (3) We perform a comprehensive evaluation with six real-world production-level scientific datasets on both CPUs and GPUs. Experiments show that SZx is 2∼16× faster than the second-fastest existing error-bounded lossy compressor (either SZ or ZFP) on CPUs and GPUs, with respect to both compression and decompression. 
    more » « less
  5. Today’s extreme-scale high-performance computing (HPC) applications are producing volumes of data too large to save or transfer because of limited storage space and I/O bandwidth. Error-bounded lossy compression has been commonly known as one of the best solutions to the big science data issue, because it can significantly reduce the data volume with strictly controlled data distortion based on user requirements. In this work, we develop an adaptive parameter optimization algorithm integrated with a series of optimization strategies for SZ, a state-of-the-art prediction-based compression model. Our contribution is threefold. (1) We exploit effective strategies by using 2nd-order regression and 2nd-order Lorenzo predictors to improve the prediction accuracy significantly for SZ, thus substantially improving the overall compression quality. (2) We design an efficient approach selecting the best-fit parameter setting, by conducting a comprehensive priori compression quality analysis and exploiting an efficient online controlling mechanism. (3) We evaluate the compression quality and performance on a supercomputer with 4,096 cores, as compared with other state-ofthe-art error-bounded lossy compressors. Experiments with multiple real world HPC simulations datasets show that our solution can improve the compression ratio up to 46% compared with the second-best compressor. Moreover, the parallel I/O performance is improved by up to 40% thanks to the significant reduction of data size. 
    more » « less