skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Influence of crowding on hydrophobic hydration-shell structure
The influence of molecular crowding on water structure, and the associated crossover behavior, is quantified using Raman multivariate curve resolution (Raman-MCR) hydration-shell vibrational spectroscopy of aqueous tert -butyl alcohol, 2-butyl alcohol and 2-butoxyethanol solutions of variable concentration and temperature. Changes in the hydration-shell OH stretch band shape and mean frequency are used to identify the temperature at which the hydration-shell crosses over from a more ordered to less ordered structure, relative to pure water. The influence of crowding on the crossover is found to depend on solute size and shape in a way that is correlated with the corresponding infinitely dilute hydration-shell structure (and the corresponding first hydration-shell spectra are invariably very similar to pure water). Analysis of the results using a Muller-like two-state equilibrium between more ordered and less ordered hydration-shell structures implies that crossover temperature changes are dictated primarily by enthalpic stabilization of the more ordered hydration-shell structures.  more » « less
Award ID(s):
1763581
NSF-PAR ID:
10173809
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
20
ISSN:
1463-9076
Page Range / eLocation ID:
11724 to 11730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The influence of oily molecules on the structure of liquid water is a question of importance to biology and geology and many other fields. Previous experimental, theoretical, and simulation studies of methane in liquid water have reached widely conflicting conclusions regarding the structure of hydrophobic hydration‐shells. Herein we address this question by performing Raman hydration‐shell vibrational spectroscopic measurements of methane in liquid water from −10 °C to 300 °C (at 30 MPa, along a path that parallels the liquid‐vapor coexistence curve). We show that, near ambient temperatures, methane's hydration‐shell is slightly more tetrahedral than pure water. Moreover, the hydration‐shell undergoes a crossover to a more disordered structure above ca. 85 °C. Comparisons with the crossover temperature of aqueous methanol (and other alcohols) reveal the stabilizing influence of an alcohol OH head‐group on hydrophobic hydration‐shell fragility.

     
    more » « less
  2. Abstract

    The influence of oily molecules on the structure of liquid water is a question of importance to biology and geology and many other fields. Previous experimental, theoretical, and simulation studies of methane in liquid water have reached widely conflicting conclusions regarding the structure of hydrophobic hydration‐shells. Herein we address this question by performing Raman hydration‐shell vibrational spectroscopic measurements of methane in liquid water from −10 °C to 300 °C (at 30 MPa, along a path that parallels the liquid‐vapor coexistence curve). We show that, near ambient temperatures, methane's hydration‐shell is slightly more tetrahedral than pure water. Moreover, the hydration‐shell undergoes a crossover to a more disordered structure above ca. 85 °C. Comparisons with the crossover temperature of aqueous methanol (and other alcohols) reveal the stabilizing influence of an alcohol OH head‐group on hydrophobic hydration‐shell fragility.

     
    more » « less
  3. X-ray absorption spectroscopy (XAS) is a powerful experimental tool to probe the local structure in materials with the core hole excitations. Here, the oxygen K-edge XAS spectra of the NaCl solution and pure water are computed by using a recently developed GW-Bethe-Salpeter equation approach, based on configurations modeled by path-integral molecular dynamics with the deep-learning technique. The neural network is trained on ab initio data obtained with strongly constrained and appropriately normed density functional theory. The observed changes in the XAS features of the NaCl solution, compared to those of pure water, are in good agreement between experimental and theoretical results. We provided detailed explanations for these spectral changes that occur when NaCl is solvated in pure water. Specifically, the presence of solvating ion pairs leads to localization of electron-hole excitons. Our theoretical XAS results support the theory that the effects of the solvating ions on the H-bond network are mainly confined within the first hydration shell of ions, however beyond the shell the arrangement of water molecules remains to be comparable to that observed in pure water.

     
    more » « less
  4. Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N–H stretch of DNA base pairs and the O–H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove “spine of hydration” is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.

     
    more » « less
  5. Classical molecular dynamics simulations of the hydration thermodynamics, structure, and dynamics of water in hydration shells of charged buckminsterfullerenes are presented in this study. Charging of fullerenes leads to a structural transition in the hydration shell, accompanied by creation of a significant population of dangling O–H bonds pointing toward the solute. In contrast to the well accepted structure–function paradigm, this interfacial structural transition causes nearly no effect on either the dynamics of hydration water or on the solvation thermodynamics. Linear response to the solute charge is maintained despite significant structural changes in the hydration shell, and solvation thermodynamic potentials are nearly insensitive to the altering structure. Only solvation heat capacities, which are higher thermodynamic derivatives of the solvation free energy, indicate some sensitivity to the local hydration structure. We have separated the solvation thermodynamic potentials into direct solute–solvent interactions and restructuring of the hydration shell and analyzed the relative contributions of electrostatic and nonpolar interactions to the solvation thermodynamics. 
    more » « less