skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic Slide Generation for Scientific Papers
We describe our approach for automatically generating presentation slides for scientific papers using deep neural networks. Such slides can help authors have a starting point for their slide generation process. Extractive summarization techniques are applied to rank and select important sentences from the original document. Previous work identified important sentences based only on a limited number of features that were extracted from the position and structure of sentences in the paper. Our method extends previous work by (1) extracting a more comprehensive list of surface features, (2) considering semantic or meaning of the sentence, and (3) using context around the current sentence to rank the sentences. Once, the sentences are ranked, salient sentences are selected using Integer Linear Programming (ILP). Our results show the efficacy of our model for summarization and the slide generation task.  more » « less
Award ID(s):
1823288
PAR ID:
10173903
Author(s) / Creator(s):
Date Published:
Journal Name:
Third International Workshop on Capturing Scientific Knowledge co-located with the 10th International Conference on Knowledge Capture (K-CAP 2019),SciKnow@K-CAP 2019
Page Range / eLocation ID:
11-16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Presentation slides describing the content of scientific and technical papers are an efficient and effective way to present that work. However, manually generating presentation slides is labor intensive. We propose a method to automatically generate slides for scientific papers based on a corpus of 5000 paper-slide pairs compiled from conference proceedings websites. The sentence labeling module of our method is based on SummaRuNNer, a neural sequence model for extractive summarization. Instead of ranking sentences based on semantic similarities in the whole document, our algorithm measures importance and novelty of sentences by combining semantic and lexical features within a sentence window. Our method outperforms several baseline methods including SummaRuNNer by a significant margin in terms of ROUGE score. 
    more » « less
  2. Given vector representations for individual words, it is necessary to compute vector representations of sentences for many applications in a compositional manner, often using artificial neural networks. Relatively little work has explored the internal structure and properties of such sentence vectors. In this paper, we explore the properties of sentence vectors in the context of automatic summarization. In particular, we show that cosine similarity between sentence vectors and document vectors is strongly correlated with sentence importance and that vector semantics can identify and correct gaps between the sentences chosen so far and the document. In addition, we identify specific dimensions which are linked to effective summaries. To our knowledge, this is the first time specific dimensions of sentence embeddings have been connected to sentence properties. We also compare the features of different methods of sentence embeddings. Many of these insights have applications in uses of sentence embeddings far beyond summarization. 
    more » « less
  3. While the NLP community has produced numerous summarization benchmarks, none provide the rich annotations required to simultaneously address many important problems related to control and reliability. We introduce a Wikipedia-derived benchmark, complemented by a rich set of crowd-sourced annotations, that supports 8 interrelated tasks: (i) extractive summarization; (ii) abstractive summarization; (iii) topic-based summarization; (iv) compressing selected sentences into a one-line summary; (v) surfacing evidence for a summary sentence; (vi) predicting the factual accuracy of a summary sentence; (vii) identifying unsubstantiated spans in a summary sentence; (viii) correcting factual errors in summaries. We compare various methods on this benchmark and discover that on multiple tasks, moderately-sized fine-tuned models consistently outperform much larger few-shot prompted language models. For factuality-related tasks, we also evaluate existing heuristics to create training data and find that training on them results in worse performance than training on 20× less human-labeled data. Our articles draw from 6 domains, facilitating cross-domain analysis. On some tasks, the amount of training data matters more than the domain where it comes from, while for other tasks training specifically on data from the target domain, even if limited, is more beneficial. 
    more » « less
  4. Abstract—Summarization of long sequences into a concise statement is a core problem in natural language processing, which requires a non-trivial understanding of the weakly structured text. Therefore, integrating crowdsourced multiple users’ comments into a concise summary is even harder because (1) it requires transferring the weakly structured comments to structured knowledge. Besides, (2) the users comments are informal and noisy. In order to capture the long-distance relationships in staggered long sentences, we propose a neural multi-comment summarization (MCS) system that incorporates the sentence relationships via graph heuristics that utilize relation knowledge graphs, i.e., sentence relation graphs (SRG) and approximate discourse graphs (ADG). Motivated by the promising results of gated graph neural networks (GG-NNs) on highly structured data, we develop a GG-NNs with sequence encoder that incorporates SRG or ADG in order to capture the sentence relationships. Specifically, we employ the GG-NNs on both relation knowledge graphs, with the sentence embeddings as the input node features and the graph heuristics as the edges’ weights. Through multiple layerwise propagations, the GG-NNs generate the salience for each sentence from high-level hidden sentence features. Consequently, we use a greedy heuristic to extract salient users’ comments while avoiding the noise in comments. The experimental results show that the proposed MCS improves the summarization performance both quantitatively and qualitatively. 
    more » « less
  5. Extractive text summarization aims at extract- ing the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sen- tence embedding plays an important role. Re- cent studies have leveraged graph neural net- works to capture the inter-sentential relation- ship (e.g., the discourse graph) to learn con- textual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity & natural connection), nor model intra-sentential relationships (e.g, semantic & syntactic relationship among words). To ad- dress these problems, we propose a novel Mul- tiplex Graph Convolutional Network (Multi- GCN) to jointly model different types of rela- tionships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extrac- tive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate the effec- tiveness of our method. 
    more » « less