Abstract Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants—the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins—also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context.
more »
« less
Involvement of a G Protein Regulatory Circuit in Alternative Oxidase Production in Neurospora crassa
The Neurospora crassa nuclear aod-1 gene encodes an alternative oxidase that functions in mitochondria. The enzyme provides a branch from the standard electron transport chain by transferring electrons directly from ubiquinol to oxygen. In standard laboratory strains, aod-1 is transcribed at very low levels under normal growth conditions. However, if the standard electron transport chain is disrupted, a od-1 mRNA expression is induced and the AOD1 protein is produced. We previously identified a strain of N. crassa , that produces high levels of aod-1 transcript under non-inducing conditions. Here we have crossed this strain to a standard lab strain and determined the genomic sequences of the parents and several progeny. Analysis of the sequence data and the levels of aod-1 mRNA in uninduced cultures revealed that a frameshift mutation in the flbA gene results in the high uninduced expression of aod-1 . The flbA gene encodes a regulator of G protein signaling that decreases the activity of the Gα subunit of heterotrimeric G proteins. Our data suggest that strains with a functional flbA gene prevent uninduced expression of aod-1 by inactivating a G protein signaling pathway, and that this pathway is activated in cells grown under conditions that induce aod-1 . Induced cells with a deletion of the gene encoding the Gα protein still have a partial increase in aod-1 mRNA levels, suggesting a second pathway for inducing transcription of the gene in N. crassa . We also present evidence that a translational control mechanism prevents production of AOD1 protein in uninduced cultures.
more »
« less
- Award ID(s):
- 1818006
- PAR ID:
- 10173916
- Date Published:
- Journal Name:
- G3: Genes|Genomes|Genetics
- Volume:
- 9
- Issue:
- 10
- ISSN:
- 2160-1836
- Page Range / eLocation ID:
- 3453 to 3465
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 “core” mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway—evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1 . We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.more » « less
-
Abstract Amputation of a salamander tail leads to functional spinal cord regeneration through activation of endogenous stem cells. Identifying the signaling pathways that control cell proliferation in these neural stem cells will help elucidate the mechanisms underlying the salamander’s regenerative ability. Here, we show that neuregulin 1 (Nrg1)/ErbB2 signaling is an important pathway in the regulation of neural stem cell proliferation in the spinal cord of the axolotl salamander (Ambystoma mexicanum). Simultaneous localization ofnrg1mRNA and Nrg1 protein was performed by utilizing a hybridization chain reaction fluorescencein situhybridization (FISH) methodology in tissue sections. Multiplexed FISH also permitted the phenotyping of multiple cell types on a single fixed section allowing the characterization of mRNA expression, protein expression, and tissue architecture. Pharmacological inhibition of ErbB2 showed that intact Nrg1/ErbB2 signaling is critical for adult homeostatic regeneration as well as for injury‐induced spinal cord regeneration. Overall, our results highlight the importance of the NRG1/ErbB2 signaling pathway in neural stem cell proliferation in the axolotl.more » « less
-
In opportunistic human pathogenic fungi, changes in gene expression play a crucial role in the progression of growth stages from early spore germination through host infection. Comparative transcriptomics between diverse fungal pathogens and non-pathogens provided insights into regulatory mechanisms behind the initiation of infectious processes. We examined the gene expression patterns of 3,845 single-copy orthologous genes (SCOGs) across five phylogenetically distinct species, including the opportunistic human pathogens Fusarium oxysporum, Aspergillus fumigatus, and A. nidulans, and nonpathogenic species Neurospora crassa and Trichoderma asperelloides, at four sequential stages of spore germination. Ancestral status of gene expression was inferred for nodes along the phylogeny. By comparing expression patterns of the SCOGs with their most recent common ancestor (MRCA), we identified genes that exhibit divergent levels of expression during spore germination when comparing fungal pathogens to non-pathogens. We focused on genes related to the MAPK pathway, nitrogen metabolism, asexual development, G-protein signaling, and conidial-wall integrity. Notably, orthologs of the transcription activator abaA, a known central regulator of conidiation, exhibited significant divergence in gene expression in F. oxysporum. This dramatic expression change in abaA was accompanied by structural modifications of phialides in F. oxysporum, and revealed how these changes impact development of offspring, formation of aerial hyphae, spore production, and pathogenicity. Our research provides insights into ecological adaptations observed during the divergence of these species, specifically highlighting how divergence in gene expression during spore germination contributes to their ability to thrive in distinct environments.more » « less
-
Gilbert, Wendy V (Ed.)The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal’s surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds topqm-1mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of bothpqm-1and downstream PQM-1 activated genes. Interestingly, we find that neuralpqm-1expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe inadrmutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism inCaenorhabditis elegansthat allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.more » « less
An official website of the United States government

