skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: What Drives the North Atlantic Oscillation’s Temperature Anomaly Pattern? Part I: The Growth and Decay of the Surface Air Temperature Anomalies
Abstract Composite analysis is used to examine the physical processes that drive the growth and decay of the surface air temperature anomaly pattern associated with the North Atlantic Oscillation (NAO). Using the thermodynamic energy equation that the European Centre for Medium-Range Weather Forecasts implements in their reanalysis model, we show that advection of the climatological temperature field by the anomalous wind drives the surface air temperature anomaly pattern for both NAO phases. Diabatic processes exist in strong opposition to this temperature advection and eventually cause the surface air temperature anomalies to return to their climatological values. Specifically, over Greenland, Europe, and the United States, longwave heating/cooling opposes horizontal temperature advection while over northern Africa vertical mixing opposes horizontal temperature advection. Despite the pronounced spatial correspondence between the skin temperature and surface air temperature anomaly patterns, the physical processes that drive these two temperature anomalies associated with the NAO are found to be distinct. The skin temperature anomaly pattern is driven by downward longwave radiation whereas stated above, the surface air temperature anomaly pattern is driven by horizontal temperature advection. This implies that the surface energy budget, although a useful diagnostic tool for understanding skin temperature changes, should not be used to understand surface air temperature changes.  more » « less
Award ID(s):
1822015 1723832
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Page Range / eLocation ID:
185 to 198
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The wintertime (December–February) 1990–2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high-dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale of about 10 days and having about 85% of its variance coming from intraseasonal time scales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay, and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation. 
    more » « less
  2. Abstract Radiative transfer calculations are conducted to determine the contribution of temperature and water vapor anomalies toward the surface clear-sky downward longwave radiation (DLR) anomalies of the NAO. These calculations are motivated by the finding that the NAO’s skin temperature anomalies are driven primarily by changes in surface DLR. The clear-sky radiative transfer calculations follow the result that the clear-sky surface DLR anomalies can account for most of the all-sky surface DLR anomalies of the NAO. The results of the radiative transfer calculations prompt an analysis of the thermodynamic energy and total column water (TCW) budget equations, as water vapor and temperature anomalies are found to be equally important drivers of the surface DLR anomalies of the NAO. Composite analysis of the thermodynamic energy equation reveals that the temperature anomalies of the NAO are wind driven: the advection of climatological temperature by the anomalous wind drives the NAO’s temperature anomalies at all levels except for those in the upper troposphere–lower stratosphere where the advection of anomalous temperature by the climatological wind becomes dominant. A similar analysis of the TCW budget reveals that changes in TCW are driven by water flux convergence. In addition to determining the drivers of the temperature and TCW anomalies, the thermodynamic energy and water budget analyses reveal that the decay of the temperature anomalies occurs primarily through vertical mixing, and that of the water anomalies mostly by evaporation minus precipitation. 
    more » « less
  3. Abstract

    Applying composite analysis to ERA-Interim data, the surface air temperature (SAT) anomaly pattern of the Pacific–North American (PNA) teleconnection is shown to include both symmetric and asymmetric SAT anomalies with respect to the PNA phase. The symmetric SAT anomalies, overlying the Russian Far East and western and eastern North America, grow through advection of the climatological temperature by the anomalous meridional wind and vertical mixing. The asymmetric SAT anomalies, overlying Siberia during the positive PNA and the subtropical North Pacific during the negative PNA, grow through vertical mixing only. For all SAT anomalies, vertical mixing relocates the temperature anomalies of the PNA teleconnection pattern from higher in the boundary layer downward to the level of the SAT. Above the level of the SAT, temperature anomaly growth is caused by horizontal temperature advection in all locations except for the subtropical North Pacific, where adiabatic cooling dominates. SAT anomaly decay is caused by longwave radiative heating/cooling, except over Siberia, where SAT anomaly decay is caused by vertical mixing. Additionally, temperature anomaly decay higher in the boundary layer due to nonlocal mixing contributes indirectly to SAT anomaly decay by weakening downgradient diffusion. These results highlight a diverse array of mechanisms by which individual anomalies within the PNA pattern grow and decay. Furthermore, with the exception of Siberia, throughout the growth and decay stages, horizontal temperature advection and/or vertical mixing is nearly balanced by longwave radiative heating/cooling, with the former being slightly stronger during the growth stage and the latter during the decay stage.

    more » « less
  4. Abstract The physical mechanisms whereby the mean and transient circulation anomalies associated with the North Atlantic Oscillation (NAO) drive winter mean precipitation anomalies across the North Atlantic Ocean, Europe, and the Mediterranean Sea region are investigated using the European Centre for Medium-Range Weather Forecasts interim reanalysis. A moisture budget decomposition is used to identify the contribution of the anomalies in evaporation, the mean flow, storm tracks and the role of moisture convergence and advection. Over the eastern North Atlantic, Europe, and the Mediterranean, precipitation anomalies are primarily driven by the mean flow anomalies with, for a positive NAO, anomalous moist advection causing enhanced precipitation in the northern British Isles and Scandinavia and anomalous mean flow moisture divergence causing drying over continental Europe and the Mediterranean region. Transient eddy moisture fluxes work primarily to oppose the anomalies in precipitation minus evaporation generated by the mean flow, but shifts in storm-track location and intensity help to explain regional details of the precipitation anomaly pattern. The extreme seasonal precipitation anomalies that occurred during the two winters with the most positive (1988/89) and negative (2009/10) NAO indices are also explained by NAO-associated mean flow moisture convergence anomalies. 
    more » « less
  5. Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300 hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud–radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid- to high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes. 
    more » « less