skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coexistence of Left- and Right-Handed 12/10-Mixed Helices in Cyclically Constrained β-Peptides and Directed Formation of Single-Handed Helices upon Site-Specific Methylation
Award ID(s):
1764148
PAR ID:
10174005
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
124
Issue:
28
ISSN:
1089-5639
Page Range / eLocation ID:
5856 to 5870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Helical structures exhibit novel optical and mechanical properties and are commonly used in different fields such as metamaterials and microfluidics. A few methods exist for fabricating helical microstructures, but none of them has the throughput or flexibility required for patterning a large surface area with tunable pitch. In this paper, we report a method for fabricating helical structures with adjustable forms over large areas based on multiphoton polymerization (MPP) using single-exposure, three dimensionally structured, self-accelerating, axially tunable light fields. The light fields are generated as a superposition of high-order Bessel modes and have a closed-form expression relating the design of the phase mask to the rotation rate of the beam. The method is used to fabricate helices with different pitches and handedness in the material SU-8. Compared to point-by-point scanning, the method reported here can be used to reduce fabrication time by two orders of magnitude, paving the way for adopting MPP in many industrial applications. 
    more » « less