skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Upper Windermere Supergroup and the transition from rifting to continent-margin sedimentation, Nadaleen River area, northern Canadian Cordillera
Abstract Neoproterozoic–Cambrian rocks of the Windermere Supergroup and overlying units record the breakup of Rodinia and formation of the northwestern Laurentian ancestral continental margin. Understanding the nature and timing of this transition has been hampered by difficulty correlating poorly dated sedimentary successions from contrasting depositional settings across Mesozoic structures. Here we present new litho- and chemo-stratigraphic data from a Cryogenian–lower Cambrian succession in east-central Yukon (Canada), establish correlations between proximal and distal parts of the upper Windermere Supergroup and related strata in the northern Canadian Cordillera, and consider implications for the formation of the northwestern Laurentian margin. The newly defined Nadaleen Formation hosts the first appearance of Ediacaran macrofossils, while the overlying Gametrail Formation features a large negative carbon isotope anomaly with δ13Ccarb values as low as –13‰ that correlates with the globally developed Shuram-Wonoka anomaly. We also define the Rackla Group, which includes the youngest (Ediacaran) portions of the Windermere Supergroup in the northern Cordillera. The top of the Windermere Supergroup is marked by an unconformity above the Risky Formation that passes into a correlative conformity in the Nadaleen River area. This surface has been interpreted to mark the top of the rift-related succession, but we draw attention to evidence for tectonic instability through the early-middle Cambrian and argue that the transition from rifting to post-rift thermal subsidence is marked by a widespread unconformity that underlies upper Cambrian carbonate rocks. This is younger than the interpreted age of the rift to post-rift transition elsewhere along the ancestral western Laurentian continental margin.  more » « less
Award ID(s):
1624131
PAR ID:
10174284
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
GSA Bulletin
Volume:
131
Issue:
9-10
ISSN:
0016-7606
Page Range / eLocation ID:
1673 to 1701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The age and nature of the Neoproterozoic – early Paleozoic rift–drift transition has been interpreted differently along the length of the North American Cordillera. The Ediacaran “upper” group (herein elevated to the Rackla Group) of the Coal Creek inlier, Yukon, Canada, represents a key succession to reconstruct the sedimentation history of northwestern Laurentia across the Precambrian–Cambrian boundary and elucidate the timing of active tectonism during the protracted breakup of the supercontinent Rodinia. These previously undifferentiated late Neoproterozoic – early Paleozoic map units in the Coal Creek inlier are herein formally defined as the Lone, Cliff Creek, Mount Ina, Last Chance, Shade, and Shell Creek formations. New sedimentological and stratigraphic data from these units is used to reconstruct the depositional setting. In the Last Chance Formation, chemostratigraphic observations indicate a ca. 5‰ δ 13 C carb gradient coincident with the globally recognized ca. 574–567 Ma Shuram carbon isotope excursion. Map and stratigraphic relationships in the overlying Shell Creek Formation provide evidence for latest Ediacaran – middle Cambrian tilting and rift-related sedimentation. This provides evidence for active extension through the Cambrian Miaolingian Series in northwestern Canada, supporting arguments for a multiphase and protracted breakup of Rodinia. 
    more » « less
  2. Abstract Deposition of the Late Jurassic Morrison Formation in a back‐bulge depozone and formation of the overlying sub‐Cretaceous unconformity above a forebulge mark the birth of the foreland basin system in the central U.S. Cordillera. In the southern U.S. Cordillera, the Morrison Formation is either anomalously thick or absent and the sub‐Cretaceous unconformity cuts out progressively older stratigraphy toward the south on the Colorado Plateau. Based on results of 2D and 3D flexural modeling, we suggest that flexural uplift of the northern rift flank of the Bisbee segment of the Borderland Rift Belt can explain these observations. Structural restoration of the sub‐Cretaceous unconformity indicates a minimum of 1.5 km of uplift and flexural models with an effective elastic thickness of 55 ± 5 km can reproduce the geometry of the unconformity and rift flank. This implies that effective elastic thickness has decreased between the Jurassic and the present, consistent with hypotheses for uplift and modification of the Colorado Plateau lithosphere during the Late Mesozoic to Cenozoic. Modeling results also predict the presence of a rift‐related flexural trough in the Four Corners region of the Colorado Plateau, which may explain above‐average thickness of the Morrison Formation. Constructive interference between a flexural back‐bulge depozone and a flexural rift‐flank trough may help explain anomalously high Late Jurassic subsidence. 
    more » « less
  3. null (Ed.)
    Abstract We present chemostratigraphy, biostratigraphy, and geochronology from a succession that spans the Ediacaran-Cambrian boundary in Sonora, Mexico. A sandy hematite-rich dolostone bed, which occurs 20 m above carbonates that record the nadir of the basal Cambrian carbon isotope excursion within the La Ciénega Formation, yielded a maximum depositional age of 539.40 ± 0.23 Ma using U-Pb chemical abrasion–isotope dilution–thermal ionization mass spectrometry on a population of sharply faceted volcanic zircon crystals. This bed, interpreted to contain reworked tuffaceous material, is above the last occurrences of late Ediacaran body fossils and below the first occurrence of the Cambrian trace fossil Treptichnus pedum, and so the age calibrates key markers of the Ediacaran-Cambrian boundary. The temporal coincidence of rift-related flood basalt volcanism in southern Laurentia (>250,000 km3 of basalt), a negative carbon isotope excursion, and biological turnover is consistent with a mechanistic link between the eruption of a large igneous province and end-Ediacaran extinction. 
    more » « less
  4. Abstract The origin and displacement history of terranes emplaced along the northern margin of North America remain contentious. One of these terranes is the North Slope subterrane of the Arctic Alaska-Chukotka microplate, which is separated from the northwestern margin of Laurentia (Yukon block) by the Porcupine Shear Zone of Alaska and Yukon. Here, we present new field observations, geological mapping, detrital zircon U-Pb geochronology, and sedimentary/igneous geochemistry to elucidate the stratigraphic architecture of deformed pre-Mississippian rocks exposed within the Porcupine Shear Zone, which we distinguish herein as the newly defined Ch’oodeenjìk succession. The oldest rocks in the Ch’oodeenjìk succession consist of siliciclastic strata of the Lahchah and Sunaghun formations (new names), which yield detrital zircon U-Pb age populations of ca. 1050-1250, 1350-1450, 1600-1650, and 2500-2800 Ma (n =800). This succession is overlain by chert-bearing dolostone and limestone of the Caribou Bar formation (new name) that contains vase-shaped microfossils and yields carbonate carbon (δ13Ccarb) and strontium (87Sr/86Sr) isotopic data that range from ca. -3‰ to +3‰ and 0.70636 to 0.70714, respectively. These data suggest that Lahchah, Sunaghun, and Caribou Bar formations are late Tonian in age. These Neoproterozoic rocks are intruded by Late Devonian (Frasnian-Famennian) felsic plutons and mafic dikes, one of which yielded a sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) U-Pb age of 380 ± 4 Ma. Neoproterozoic strata of the Ch’oodeenjìk succession are also unconformably overlain by Upper Devonian-Carboniferous (?) siliciclastic rocks of the Darcy Creek formation (new name), which yields detrital zircon populations of ca. 365–385, 420-470 and 625-835 Ma, in addition to Proterozoic age populations similar to the underlying Tonian strata. Together, these new stratigraphic, geochronological, geochemical, and micropaleontological data indicate that pre-Mississippian rocks exposed within the Porcupine Shear Zone most likely represent a peri-Laurentian crustal fragment that differs from the adjacent Yukon block and North Slope subterrane; thus, the Porcupine Shear Zone represents a fundamental tectonic boundary separating autochthonous Laurentia from various accreted peri-Laurentian crustal fragments. 
    more » « less
  5. null (Ed.)
    Abstract The bimodal Wichita igneous province (WIP) represents the only exposed Ediacaran to Cambrian anorogenic magmatic assemblage present along the buried southern margin of Laurentia and was emplaced during rifting in the Southern Oklahoma Aulacogen prior to Cambrian opening of the southern Iapetus Ocean. Here, we establish the first high-precision U-Pb zircon geochronological framework for the province. Weighted mean 206Pb/238U dates from mafic and felsic rocks in the Wichita Mountains indicate emplacement in a narrow time frame from 532.49 ± 0.12 Ma to 530.23 ± 0.14 Ma. Rhyolite lavas in the Arbuckle Mountains farther east yield weighted mean 206Pb/238U dates of 539.20 ± 0.15 Ma and 539.46 ± 0.13 Ma. These dates for the WIP indicate that magmatism in the Southern Oklahoma Aulacogen postdated the ca. 540 Ma rift-drift transition along the Appalachian margin to the east. Whole-rock trace-element and isotopic geochemistry, supplemented by trace elements in zircon, tracks the evolution of magma sources during WIP petrogenesis. These data indicate that initial melting and assimilation of subcontinental mantle lithosphere by an uprising mantle plume were followed by increasing involvement of asthenospheric melts with time. We suggest that upwelling of this plume in the area of the Southern Oklahoma Aulacogen triggered an inboard jump of the spreading center active along the eastern margin of Laurentia, which led to separation of the Precordillera terrane (now located in Argentina) from the Ouachita embayment present in the southern Laurentian margin. 
    more » « less