skip to main content


Title: Placement of tyrosine residues as a design element for tuning the phase transition of elastin-peptide-containing conjugates: experiments and simulations
Elastin-like polypeptides (ELP) have been widely used in the biomaterials community due to their controllable, thermoresponsive properties and biocompatibility. Motivated by our previous work on the effect of tryptophan (W) substitutions on the LCST-like transitions of short ELPs, we studied a series of short ELPs containing tyrosine (Y) and/or phenylalanine (F) guest residues with only 5 or 6 pentapeptide repeat units. A combination of experiments and molecular dynamics (MD) simulations illustrated that the substitution of F with Y guest residues impacted the transition temperature ( T t ) of short ELPs when conjugated to collagen-like-peptides (CLP), with a reduction in the transition temperature observed only after substitution of at least two residues. Placement of the Y residues near the N-terminal end of the ELP, away from the tethering point to the CLP, resulted in a lower T t than that observed for peptides with the Y residues near the tethering point. Atomistic and coarse-grained MD simulations indicated an increase in intra- and inter-peptide hydrogen bonds in systems containing Y guest residues that are suggested to enhance the ability of the peptides to coacervate, with a concomitantly lower T t . Simulations also revealed that the placement of Y-containing pentads near the N-terminus ( i.e. , away from the CLP tethering point) versus C-terminus of the ELP led to more π–π stacking interactions at low temperatures, in agreement with our experimental observations of a lower T t . Overall, this study provides mechanistic insights into the driving forces for the LCST-like transitions of ELPs and offers additional means for tuning the T t of short ELPs for biomedical applications such as on-demand drug delivery and tissue engineering.  more » « less
Award ID(s):
1703402
NSF-PAR ID:
10174735
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The self-assembly of nanostructures from conjugates of elastin-like peptides and collagen-like peptides (ELP-CLP) has been studied as means to produce thermoresponsive, collagen-binding drug delivery vehicles. Motivated by our previous work in which ELP-CLP conjugates successfully self-assembled into vesicles and platelet-like nanostructures, here, we extend our library of ELP-CLP bioconjugates to a series of tryptophan/phenylalanine-containing ELPs and GPO-based CLPs [W 2 F x - b -(GPO) y ] with various domain lengths to determine the impact of these modifications on the thermoresponsiveness and morphology. The lower transition temperature of the conjugates with longer ELP or CLP domains enables the formation of well-defined nanoparticles near physiological temperature. Moreover, the morphological transition from vesicles to platelet-like nanostructures occurred when the ratio of the lengths of ELP/CLP decreased. Given the previously demonstrated ability of many ELP-CLP bioconjugates to bind to both hydrophobic drugs and collagen-containing materials, our results suggest new opportunities for designing specific thermoresponsive nanostructures for targeted biological applications. 
    more » « less
  2. Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, D P , E P , R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I′ band profiles to facilitate a comparison to spectroscopic data through reduced χ 2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ 2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, D P , R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ 2 values. 
    more » « less
  3. Abstract

    Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on‐demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle‐based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin‐b‐collagen‐like polypeptide (ELP‐CLP) conjugate that is capable of self‐assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP‐CLP conjugates, demonstrating that the inverse transition temperature (Tt) of the ELP‐CLPs can be manipulated by modifying the melting temperature (Tm) of the CLP domain, and that the overall hydrophilicity of the ELP‐CLP conjugate also may alter theTt. Based on these design parameters, we demonstrate that the ELP‐CLP sequence (VPGFG)6‐(GPO)7GG can self‐assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above itsTm. We also demonstrate here for the first time the ability of this ELP‐CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (Tt) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications.

     
    more » « less
  4. The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: l -Asp, l -isoAsp, d -Asp, and d -isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form c n +57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the l - and d forms of Asp and isoAsp could also be differentiated based on the relative abundance of y - and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R , which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides. 
    more » « less
  5. Abstract

    Human leukocyte antigen class I (HLA-I) molecules bind and present peptides at the cell surface to facilitate the induction of appropriate CD8+ T cell-mediated immune responses to pathogen- and self-derived proteins. The HLA-I peptide-binding cleft contains dominant anchor sites in the B and F pockets that interact primarily with amino acids at peptide position 2 and the C-terminus, respectively. Nonpocket peptide–HLA interactions also contribute to peptide binding and stability, but these secondary interactions are thought to be unique to individual HLA allotypes or to specific peptide antigens. Here, we show that two positively charged residues located near the top of peptide-binding cleft facilitate interactions with negatively charged residues at position 4 of presented peptides, which occur at elevated frequencies across most HLA-I allotypes. Loss of these interactions was shown to impair HLA-I/peptide binding and complex stability, as demonstrated by both in vitro and in silico experiments. Furthermore, mutation of these Arginine-65 (R65) and/or Lysine-66 (K66) residues in HLA-A*02:01 and A*24:02 significantly reduced HLA-I cell surface expression while also reducing the diversity of the presented peptide repertoire by up to 5-fold. The impact of the R65 mutation demonstrates that nonpocket HLA-I/peptide interactions can constitute anchor motifs that exert an unexpectedly broad influence on HLA-I-mediated antigen presentation. These findings provide fundamental insights into peptide antigen binding that could broadly inform epitope discovery in the context of viral vaccine development and cancer immunotherapy.

     
    more » « less