- Award ID(s):
- 1703402
- NSF-PAR ID:
- 10174735
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- ISSN:
- 2058-9689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The self-assembly of nanostructures from conjugates of elastin-like peptides and collagen-like peptides (ELP-CLP) has been studied as means to produce thermoresponsive, collagen-binding drug delivery vehicles. Motivated by our previous work in which ELP-CLP conjugates successfully self-assembled into vesicles and platelet-like nanostructures, here, we extend our library of ELP-CLP bioconjugates to a series of tryptophan/phenylalanine-containing ELPs and GPO-based CLPs [W 2 F x - b -(GPO) y ] with various domain lengths to determine the impact of these modifications on the thermoresponsiveness and morphology. The lower transition temperature of the conjugates with longer ELP or CLP domains enables the formation of well-defined nanoparticles near physiological temperature. Moreover, the morphological transition from vesicles to platelet-like nanostructures occurred when the ratio of the lengths of ELP/CLP decreased. Given the previously demonstrated ability of many ELP-CLP bioconjugates to bind to both hydrophobic drugs and collagen-containing materials, our results suggest new opportunities for designing specific thermoresponsive nanostructures for targeted biological applications.more » « less
-
Abstract Materials that respond to temporally defined exogenous cues continue to be an active pursuit of research toward on‐demand nanoparticle drug delivery applications, and using one or more exogenous temperature stimuli could significantly expand the application of nanoparticle‐based drug delivery formulations under both hyperthermal and hypothermal conditions. Previously we have reported the development of a biocompatible and thermoresponsive elastin‐
b ‐collagen‐like polypeptide (ELP‐CLP) conjugate that is capable of self‐assembling into vesicles and encapsulating small molecule therapeutics that can be delivered at different rates via a single temperature stimulus. Herein we report the evaluation of multiple ELP‐CLP conjugates, demonstrating that the inverse transition temperature (T t) of the ELP‐CLPs can be manipulated by modifying the melting temperature (T m) of the CLP domain, and that the overall hydrophilicity of the ELP‐CLP conjugate also may alter theT t. Based on these design parameters, we demonstrate that the ELP‐CLP sequence (VPGFG)6‐(GPO)7GG can self‐assemble into stable vesicles at 25°C and dissociate at elevated temperatures by means of the unfolding of the CLP domain above itsT m. We also demonstrate here for the first time the ability of this ELP‐CLP vesicle to dissociate via a hypothermic temperature stimulus by means of exploiting the inverse transition temperature (T t) phenomena found in ELPs. The development of design rules for manipulating the thermal properties of these bioconjugates will enable future modifications to either the ELP or CLP sequences to more finely tune the transitions of the conjugates for specific biomedical applications. -
Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, D P , E P , R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I′ band profiles to facilitate a comparison to spectroscopic data through reduced χ 2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ 2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, D P , R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ 2 values.more » « less
-
Abstract Surface-grafted elastin has found a wide range of uses such as sensing, tissue engineering and capture/release applications because of its ability to undergo stimuli-responsive phase transition. While various methods exist to control surface grafting in general, it is still difficult to control orientation as attachment occurs. This study investigates using an electric field as a new approach to control the surface-grafting of short elastin-like polypeptide (ELP). Characterization of ELP grafting to gold via quartz crystal microbalance with dissipation, atomic force microscopy and temperature ramping experiments revealed that the charge/hydrophobicity of the peptides, rearrangement kinetics and an applied electric field impacted the grafted morphology of ELP. Specifically, an ELP with a negative charge on the opposite end of the surface-binding moiety assembled in a more upright orientation, and a sufficient electric field pushed the charge away from the surface compared to when the same peptide was assembled in no electric field. In addition, this study demonstrated that assembling charged ELP in an applied electric field impacts transition behavior. Overall, this study reveals new strategies for achieving desirable and predictable surface properties of surface-bound ELP.more » « less
-
Among the C6 halo purine ribonucleosides, the readily accessible 6-chloro derivative has been known to undergo slow SNAr reactions with amines, particularly aryl amines. In this work, we show that in 0.1 M AcOH in EtOH, aryl amines react quite efficiently at the C6 position of 2’,3’,5’-tri-O-(t-BuMe2Si)-protected 6-chloropurine riboside (6-ClP-riboside), with concomitant cleavage of the 5’-silyl group. These two-step processes proceeded in generally good yields and notably, reactions in the absence of AcOH were much slower and/or lower yielding. Corresponding reactions of 2’,3’,5’-tri-O-(t-BuMe2Si)-protected 6-ClP-riboside with alkyl amines proceeded well but without desilylation at the primary hydroxyl terminus. These differences are likely due to the acidities of the ammonium hydrochlorides formed in these reactions, and the role of AcOH was not desilylation but possibly only purine activation. With 50% aqueous TFA in THF at 0 oC, cleavage of the 5’-silyl group from 2’,3’,5’-tri-O-(t-BuMe2Si)-protected N6 alkyl adenosine derivatives and from 6-ClP-riboside was readily achieved. Reactions of the 5’-deprotected 6-ClP-riboside with alkyl amines proceeded in high yields and under mild conditions. Because these complementary methodologies yielded N6 aryl and alkyl adenosine derivatives containing a free 5’-hydroxyl group, a variety of product functionalizations was undertaken to yield N6,C5’ doubly modified nucleoside analogues.more » « less