skip to main content


Title: Students’ Scientific Evaluations of Water Resources
Socially-relevant and controversial topics, such as water issues, are subject to differences in the explanations that scientists and the public (herein, students) find plausible. Students need to be more evaluative of the validity of explanations (e.g., explanatory models) based on evidence when addressing such topics. We compared two activities where students weighed connections between lines of evidence and explanations. In one activity, students were given four evidence statements and two models (one scientific and one non-scientific alternative); in the other, students chose four out of eight evidence statements and three models (two scientific and one non-scientific). Repeated measures analysis of variance (ANOVA) showed that both activities engaged students’ evaluations and differentially shifted students’ plausibility judgments and knowledge. A structural equation model suggested that students’ evaluation may influence post-instructional plausibility and knowledge; when students chose their lines of evidence and explanatory models, their evaluations were deeper, with stronger shifts toward a scientific stance and greater levels of post-instructional knowledge. The activities may help to develop students’ critical evaluation skills, a scientific practice that is key to understanding both scientific content and science as a process. Although effect sizes were modest, the results provided critical information for the final development and testing stage of these water resource instructional activities.  more » « less
Award ID(s):
2027376
NSF-PAR ID:
10174742
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Water
Volume:
12
Issue:
7
ISSN:
2073-4441
Page Range / eLocation ID:
2048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students often encounter alternative explanations about astronomical phenomena. However, inconsistent with astronomers’ practices, students may not be scientific, critical, and evaluative when comparing alternatives. Instructional scaffolds, such as the Model-Evidence Link (MEL) diagram, where students weigh connections between lines of evidence and alternative explanations, may help facilitate students’ scientific evaluation and deepen their learning about astronomy. Our research team has developed two forms of the MEL: (a) the preconstructed MEL (pcMEL), where students are given four lines of evidence and two alternative explanatory models about the formation of Earth’s Moon and (b) the build-a-MEL (baMEL), where students construct their own diagrams by choosing four lines scientific evidence out of eight choices and two alternative explanatory model out of three choices, about the origins of the Universe. The present study compared the more autonomy-supportive baMEL to the less autonomy-supportive pcMEL and found that both scaffolds shifted high school student and preservice teacher participants’ plausibility judgments toward a more scientific stance and increased their knowledge about the topics. Additional analyses revealed that the baMEL resulted in deeper evaluations and had stronger relations between levels of evaluation and post-instructional plausibility judgements and knowledge compared to the pcMEL. This present study, focused on astronomical topics, supports our team’s earlier research that scaffolds such as the MELs in combination with more autonomy-supportive classrooms may be one way to deepen students’ scientific thinking and increase their knowledge of complex scientific phenomena.

     
    more » « less
  2. Socially relevant geoscience topics may be difficult for students to learn. For example, connecting hydraulic fracturing to Midwestern US earthquake swarms and using the fossil record to infer past Earth environments may challenge students because of their prior exposures to nonscientific explanations. Sociocognitive theoretical perspectives based on decades of developmental and educational psychology, as well as science education research posit that students may have particular difficulty in evaluating the connections between lines of scientific evidence and explanations. This challenge is especially daunting when students are confronted with various alternative explanations (e.g., scientific and nonscientific explanations). In the present study, we compared two types of scaffolds designed to facilitate Mid-Atlantic middle school students’ (N = 40) scientific thinking and learning about controversial geoscience topics when confronted with alternative explanations. In a less autonomy-supportive scaffold, participants were given four lines of evidence and two explanatory models, one scientific and one nonscientific. (Fracking; Supplementary Materials 1 & 2); in a more autonomy-supportive scaffold, students chose four of eight lines of evidence and two of three explanatory models, one scientific and two nonscientific (Fossils; Supplementary Materials 1 & 2). Quantitative analyses revealed that both activities facilitated students’ evaluations in shifting students’ judgments toward the scientific and deepening their knowledge, although the more autonomy-supportive activity had greater effect sizes. Structural equation modeling suggested that more scientific judgments related to greater knowledge at post-instruction for the more autonomy-supportive scaffold. These activities may help students develop more scientific evaluation skills, which are central to understanding geoscience content and science as a process. 
    more » « less
  3. Science learning is an important part of the K-12 educational experience, as well as in the lives of students. This study considered students’ science learning as they engaged in the instruction of scientific issues with social relevance. With classroom environments radically changing during the COVID-19 pandemic, our study adapted to teachers and students as they were forced to change from more traditional, in-person instructional settings to virtual, online instruction settings. In the present study, we considered science learning during a scaffold-facilitated process, where secondary students evaluated the connections between lines of scientific evidence and alternative explanations about fossil fuels and climate change and gauged the plausibility of each explanation. Our investigation focused on the relations between students’ levels of evaluations, shifts in plausibility judgments, and knowledge gains, and examined whether there were differences in these relations between in-person classroom settings and virtual classroom settings. The results revealed that the indirect relational pathway linking higher levels of evaluation, plausibility shifts toward a more scientific stance, and greater knowledge gains was meaningful and more robust than the direct relational pathway linking higher levels of evaluation to greater knowledge gains. The results also showed no meaningful difference between the two instructional settings, suggesting the potential adaptiveness and effectiveness of properly-designed, scaffolded science instruction. 
    more » « less
  4. null (Ed.)
    It is a pleasure to present the second special issue of The Earth Scientist sponsored by the MEL Project team (https://serc.carleton.edu/mel/index.html)! The Model-Evidence Link (MEL) and MEL2 projects have been sponsored by the National Science Foundation (Grant Nos. 1316057, 1721041, and 2027376) to Temple University and the University of Maryland, in partnership with the University of North Georgia, TERC, and the Planetary Science Institute. In 2016 we shared with you the four MEL diagram activities, covering the topics of climate change, the formation of the Moon, fracking and earthquakes, and wetlands use, as well as a rubric for assessment. This issue brings to you our four new build-a-MEL activities on the origins of the Universe, fossils and Earth’s past, freshwater resources, and extreme weather. Additionally, there are articles about a new NGSS-aligned rubric and transfer task to help students apply their new skills in other situations and about teaching with MEL and build-a-MEL activities. Our goals with all of these activities are to help students learn Earth science content by engaging in scientific practices, notably the evaluation of alternative explanatory models (by looking at the connections between lines of evidence and the competing models) and argumentation. The team has tested these activities in multiple middle and high school classrooms. Our research has shown the activities to be effective in learning both content and skills, and our partner teachers report that students enjoy the activities. These activities are freely available for teachers to use. We hope that you and your students will also find them to be effective and enjoyable approaches to learning about complex and sometimes controversial socioscientific issues within Earth Science. 
    more » « less
  5. Abstract

    There is now a significant research literature devoted to reconceptualizing scientific activities, such as modeling, explanation, and argumentation, to realize a vision of science‐as‐practice in classrooms. As yet, however, not all scientific practices have received equal attention.Planning and Carrying out Investigationsis one of the eight scientific practices identified in the Next Generation Science Standards, and there is a long line of research from both psychological and science education traditions that addresses topics about investigation, such as the generation and interpretation of evidence. However, investigation has not been subject to concerted reconceptualization within recent research and instructional design efforts focused on science‐as‐practice. In this article, we propose a framework that centers the investigation as a key locus for constructing alignments among phenomena, data, and explanatory models and makes visible the work that scientists engage in as they develop and stabilize alignments. We argue that these alignments are currently under‐theorized and under‐utilized in instructional environments. We explore four opportunities that we argue are both accessible to students from a young age and can support conceptual innovation. These are (a) developing empirical systems, (b) getting a grip on empirical systems, (c) determining, defining and operationalizing data as “evidence,” and (d) making sense of what the results of empirical systems do and do not help us understand.

     
    more » « less