We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of min sum set cover, several scheduling and search problems, and problems in Boolean function evaluation. We define a new problem, called the min sum ordering problem (MSOP), which generalizes all these problems using a cost and a weight function defined on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal, we show that under very minimal assumptions, there is a polynomial time [Formula: see text]-approximation algorithm for MSOP. This approximation result generalizes a proof technique used for several distinct problems in the literature. We apply this to obtain a number of new approximation results. Summary of Contribution: This paper provides a general framework for min sum ordering problems. Within the realm of theoretical computer science, these problems include min sum set cover and its generalizations, as well as problems in Boolean function evaluation. On the operations research side, they include problems in search theory and scheduling. We present and analyze a very general algorithm for these problems, unifying several previous results on various min sum ordering problems and resulting in new constant factor guarantees for others.
more »
« less
A General Framework for Approximating Min Sum Ordering Problems
We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of Min Sum Set Cover (MSSC), several scheduling and search problems, and problems in Boolean function evaluation. We define a new problem, called the Min Sum Ordering Problem (MSOP) which generalizes all these problems using a cost and a weight function on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal, we show that under very minimal assumptions, there is a polynomial time 4α-approximation algorithm for MSOP. This approximation result generalizes a proof technique used for several distinct problems in the literature. We apply this to obtain a number of new approximation results.
more »
« less
- Award ID(s):
- 1909446
- PAR ID:
- 10174839
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bae, Sang Won; Park, Heejin (Ed.)We consider the problem of solving the Min-Sum Submodular Cover problem using local search. The Min-Sum Submodular Cover problem generalizes the NP-complete Min-Sum Set Cover problem, replacing the input set cover instance with a monotone submodular set function. A simple greedy algorithm achieves an approximation factor of 4, which is tight unless P=NP [Streeter and Golovin, NeurIPS, 2008]. We complement the greedy algorithm with analysis of a local search algorithm. Building on work of Munagala et al. [ICDT, 2005], we show that, using simple initialization, a straightforward local search algorithm achieves a (4+ε)-approximate solution in time O(n³log(n/ε)), provided that the monotone submodular set function is also second-order supermodular. Second-order supermodularity has been shown to hold for a number of submodular functions of practical interest, including functions associated with set cover, matching, and facility location. We present experiments on two special cases of Min-Sum Submodular Cover and find that the local search algorithm can outperform the greedy algorithm on small data sets.more » « less
-
Motivated by applications to classification problems on metric data, we study Weighted Metric Clustering problem: given a metric d over n points and a k x k symmetric matrix A with non-negative entries, the goal is to find a k-partition of these points into clusters C1,...,Ck, while minimizing the sum of A[i,j] * d(u,v) over all pairs of clusters Ci and Cj and all pairs of points u from Ci and v from Cj. Specific choices of A lead to Weighted Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as Min-Uncut, Min-k-Sum, Min-k-Cut, and more.Our main result is that Weighted Metric Clustering admits a polynomial-time approximation scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear programming relaxation. This subsumes several prior works, unifies many of the techniques for various metric clustering objectives, and yields a PTAS for several new problems, including metric clustering on manifolds and a new family of hierarchical clustering objectives. Our experiments on the hierarchical clustering objective show that it better captures the ground-truth structural information compared to the popular Dasgupta's objective.more » « less
-
null (Ed.)Abstract We consider a natural generalization of classical scheduling problems to a setting in which using a time unit for processing a job causes some time-dependent cost, the time-of-use tariff, which must be paid in addition to the standard scheduling cost. We focus on preemptive single-machine scheduling and two classical scheduling cost functions, the sum of (weighted) completion times and the maximum completion time, that is, the makespan. While these problems are easy to solve in the classical scheduling setting, they are considerably more complex when time-of-use tariffs must be considered. We contribute optimal polynomial-time algorithms and best possible approximation algorithms. For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used for preemptively scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-time approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for. For preemptive scheduling to minimize the makespan, we show that there is a comparably simple optimal algorithm with polynomial running time. This is true even in a certain generalized model with unrelated machines.more » « less
-
Given two (di)graphs G, H and a cost function c:V(G) x V(H) -> Q_{>= 0} cup {+infty}, in the minimum cost homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f:V(G)-> V(H) (a.k.a H-coloring) that minimizes sum limits_{v in V(G)}c(v,f(v)). The complexity of exact minimization of this problem is well understood [Pavol Hell and Arash Rafiey, 2012], and the class of digraphs H, for which the MinHOM(H) is polynomial time solvable is a small subset of all digraphs. In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(H) is not approximable if H contains a digraph asteroidal triple (DAT). We take a major step toward a dichotomy classification of approximable cases. We give a dichotomy classification for approximating the MinHOM(H) when H is a graph (i.e. symmetric digraph). For digraphs, we provide constant factor approximation algorithms for two important classes of digraphs, namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering), and k-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that: - Dichotomy for Graphs: MinHOM(H) has a 2|V(H)|-approximation algorithm if graph H admits a conservative majority polymorphims (i.e. H is a bi-arc graph), otherwise, it is inapproximable; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a bi-arc digraph; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a k-arc digraph. In conclusion, we show the importance of these results and provide insights for achieving a dichotomy classification of approximable cases. Our constant factors depend on the size of H. However, the implementation of our algorithms provides a much better approximation ratio. It leaves open to investigate a classification of digraphs H, where MinHOM(H) admits a constant factor approximation algorithm that is independent of |V(H)|.more » « less