skip to main content

Title: The Evolution of Rotation and Magnetic Activity in 94 Aqr Aa from Asteroseismology with TESS
Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical journal
Sponsoring Org:
National Science Foundation
More Like this
  1. During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level, and that weakened braking models can more readily explain its relativelymore »fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this mid-life transition in solar-type stars.« less
  2. Abstract

    Our understanding of the impact of magnetic activity on stellar evolution continues to unfold. This impact is seen in sub-subgiant stars, defined to be stars that sit below the subgiant branch and red of the main sequence in a cluster color–magnitude diagram. Here we focus on S1063, a prototypical sub-subgiant in open cluster M67. We use a novel technique combining a two-temperature spectral decomposition and light-curve analysis to constrain starspot properties over a multiyear time frame. Using a high-resolution near-infrared IGRINS spectrum and photometric data from K2 and ASAS-SN, we find a projected spot filling factor of 32% ± 7% with a spot temperature of 4000 ± 200 K. This value anchors the variability seen in the light curve, indicating the spot filling factor of S1063 ranged from 20% to 45% over a four-year time period with an average spot filling factor of 30%. These values are generally lower than those determined from photometric model comparisons but still indicate that S1063, and likely other sub-subgiants, are magnetically active spotted stars. We find observational and theoretical comparisons of spotted stars are nuanced due to the projected spot coverage impacting estimates of the surface-averaged effective temperature. The starspot properties found heremore »are similar to those found in RS CVn systems, supporting classifying sub-subgiants as another type of active giant star binary system. This technique opens the possibility of characterizing the surface conditions of many more spotted stars than previous methods, allowing for larger future studies to test theoretical models of magnetically active stars.

    « less
  3. Abstract

    X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1M. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityLX/Lbolin unsaturated single members, suggesting a power-law index betweenmore »−3.2 and −3.9. Lastly, we find no difference in the coronal parameters between binary and single members. These results provide essential insight into the relative efficiency of magnetic heating of the stars’ atmospheres, thereby informing the development of robust age-rotation-activity relations.

    « less
  4. Context. Stellar evolution models are highly dependent on accurate mass estimates, especially for highly massive stars in the early stages of stellar evolution. The most direct method for obtaining model-independent stellar masses is derivation from the orbit of close binaries. Aims. Our aim was to derive the first astrometric plus radial velocity orbit solution for the single-lined spectroscopic binary star MWC 166 A, based on near-infrared interferometry over multiple epochs and ∼100 archival radial velocity measurements, and to derive fundamental stellar parameters from this orbit. A supplementary aim was to model the circumstellar activity in the system from K band spectral lines. Methods. The data used include interferometric observations from the VLTI instruments GRAVITY and PIONIER, as well as the MIRC-X instrument at the CHARA Array. We geometrically modelled the dust continuum to derive relative astrometry at 13 epochs, determine the orbital elements, and constrain individual stellar parameters at five different age estimates. We used the continuum models as a base to examine differential phases, visibilities, and closure phases over the Br γ and He  I emission lines in order to characterise the nature of the circumstellar emission. Results. Our orbit solution suggests a period of P  = 367.7 ± 0.1 d, approximatelymore »twice as long as found with previous radial velocity orbit fits. We derive a semi-major axis of 2.61 ± 0.04 au at d  = 990 ± 50 pc, an eccentricity of 0.498 ± 0.001, and an orbital inclination of 53.6 ± 0.3°. This allowed the component masses to be constrained to M 1  = 12.2 ± 2.2  M ⊙ and M 2  = 4.9 ± 0.5  M ⊙ . The line-emitting gas was found to be localised around the primary and is spatially resolved on scales of ∼11 stellar radii, where the spatial displacement between the line wings is consistent with a rotating disc. Conclusions. The large spatial extent and stable rotation axis orientation measured for the Br γ and He  I line emission are inconsistent with an origin in magnetospheric accretion or boundary-layer accretion, but indicate an ionised inner gas disc around this Herbig Be star. We observe line variability that could be explained either with generic line variability in a Herbig star disc or V/R variations in a decretion disc scenario. We have also constrained the age of the system, with relative flux ratios suggesting an age of ∼(7 ± 2)×10 5 yr, consistent with the system being composed of a main-sequence primary and a secondary still contracting towards the main-sequence stage.« less
  5. Abstract Asteroseismology of bright stars has become increasingly important as a method to determine the fundamental properties (in particular ages) of stars. The Kepler Space Telescope initiated a revolution by detecting oscillations in more than 500 main-sequence and subgiant stars. However, most Kepler stars are faint and therefore have limited constraints from independent methods such as long-baseline interferometry. Here we present the discovery of solar-like oscillations in α Men A, a naked-eye ( V = 5.1) G7 dwarf in TESS’s southern continuous viewing zone. Using a combination of astrometry, spectroscopy, and asteroseismology, we precisely characterize the solar analog α Men A ( T eff = 5569 ± 62 K, R ⋆ = 0.960 ± 0.016 R ⊙ , M ⋆ = 0.964 ± 0.045 M ⊙ ). To characterize the fully convective M dwarf companion, we derive empirical relations to estimate mass, radius, and temperature given the absolute Gaia magnitude and metallicity, yielding M ⋆ = 0.169 ± 0.006 M ⊙ , R ⋆ = 0.19 ± 0.01 R ⊙ , and T eff = 3054 ± 44 K. Our asteroseismic age of 6.2 ± 1.4 (stat) ± 0.6 (sys) Gyr for the primary places α Men B within amore »small population of M dwarfs with precisely measured ages. We combined multiple ground-based spectroscopy surveys to reveal an activity cycle of P = 13.1 ± 1.1 yr for α Men A, a period similar to that observed in the Sun. We used different gyrochronology models with the asteroseismic age to estimate a rotation period of ∼30 days for the primary. Alpha Men A is now the closest ( d = 10 pc) solar analog with a precise asteroseismic age from space-based photometry, making it a prime target for next-generation direct-imaging missions searching for true Earth analogs.« less