skip to main content

Title: Assessing Postural Instability and Cybersickness Through Linear and Angular Displacement
Objective: To examine the hypothesis that constant speed is more comfortable than variable speed profiles and may minimize cybersickness. Background: Current best practices for virtual reality (VR) content creation suggest keeping any form of acceleration as short and infrequent as possible to mitigate cybersickness. Methods: In Experiment 1, participants experienced repetitions of simulated linear motion, and in Experiment 2, they experienced repetitions of a circular motion. Three speed profiles were tested in each experiment. Each trial lasted 2 min while standing. Cybersickness was measured using the Simulator Sickness Questionnaire (SSQ) and operationally defined in terms of total severity scores. Postural stability was measured using a Wii Balance Board and operationally defined in terms of center of pressure (COP) path length. Postural measures were decomposed into anterior-posterior and medial-lateral axes and subjected to detrended fluctuation analysis. Results: For both experiments, no significant differences were observed between the three speed profiles in terms of cybersickness or postural stability, and none of the baseline postural measures could predict SSQ scores for the speed profile conditions. An axis effect was observed in both experiments such that normalized COP movement was significantly greater along the anterior-posterior axis than the medial-lateral axis. Conclusion: Results showed no more » convincing evidence to support the common belief that constant speed is more comfortable than variable speed profiles for scenarios typical of VR applications. Application: The present findings offer guidelines for the design of locomotion techniques involving traversal in VR environments. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Reaching movements performed from a crouched body posture require a shift of body weight from both arms to one arm. This situation has remained unexamined despite the analogous load requirements during step initiation and the many studies of reaching from a seated or standing posture. To determine whether the body weight shift involves anticipatory or exclusively reactive control, we obtained force plate records, hand kinematics, and arm muscle activity from 11 healthy right-handed participants. They performed reaching movements with their left and right arm in two speed contexts, “comfortable” and “as fast as possible,” and two postural contexts, a less stable knees-together posture and a more stable knees-apart posture. Weight-shifts involved anticipatory postural actions (APAs) by the reaching and stance arms that were opposing in the vertical axis and aligned in the side-to-side axis similar to APAs by the legs for step initiation. Weight-shift APAs were correlated in time and magnitude, present in both speed contexts, more vigorous with the knees placed together, and similar when reaching with the dominant and nondominant arm. The initial weight-shift was preceded by bursts of muscle activity in the shoulder and elbow extensors (posterior deltoid and triceps lateral) of the reach arm and shouldermore »flexor (pectoralis major) of the stance arm, which indicates their causal role; leg muscles may have indirectly contributed but were not recorded. The strong functional similarity of weight-shift APAs during crouched reaching to human stepping and cat reaching suggests that they are a core feature of posture-movement coordination. NEW & NOTEWORTHY This work demonstrates that reaching from a crouched posture is preceded by bimanual anticipatory postural adjustments (APAs) that shift the body weight to the stance limb. Weight-shift APAs are more robust in an unstable body posture (knees together) and involve the shoulder and elbow extensors of the reach arm and shoulder flexor of the stance arm. This pattern mirrors the forelimb coordination of cats reaching and humans initiating a step.« less
  2. Abstract The hippocampus displays a complex organization and function that is perturbed in many neuropathologies. Histological work revealed a complex arrangement of subfields along the medial–lateral and the ventral–dorsal dimension, which contrasts with the anterior–posterior functional differentiation. The variety of maps has raised the need for an integrative multimodal view. We applied connectivity-based parcellation to 1) intrinsic connectivity 2) task-based connectivity, and 3) structural covariance, as complementary windows into structural and functional differentiation of the hippocampus. Strikingly, while functional properties (i.e., intrinsic and task-based) revealed similar partitions dominated by an anterior–posterior organization, structural covariance exhibited a hybrid pattern reflecting both functional and cytoarchitectonic subdivision. Capitalizing on the consistency of functional parcellations, we defined robust functional maps at different levels of partitions, which are openly available for the scientific community. Our functional maps demonstrated a head–body and tail partition, subdivided along the anterior–posterior and medial–lateral axis. Behavioral profiling of these fine partitions based on activation data indicated an emotion–cognition gradient along the anterior–posterior axis and additionally suggested a self-world-centric gradient supporting the role of the hippocampus in the construction of abstract representations for spatial navigation and episodic memory.
  3. Many individuals with disabling conditions have difficulty with gait and balance control that may result in a fall. Exoskeletons are becoming an increasingly popular technology to aid in walking. Despite being a significant aid in increasing mobility, little attention has been paid to exoskeleton features to mitigate falls. To develop improved exoskeleton stability, quantitative information regarding how a user reacts to postural challenges while wearing the exoskeleton is needed. Assessing the unique responses of individuals to postural perturbations while wearing an exoskeleton provides critical information necessary to effectively accommodate a variety of individual response patterns. This report provides kinematic and neuromuscular data obtained from seven healthy, college-aged individuals during posterior support surface translations with and without wearing a lower limb exoskeleton. A 2-min, static baseline standing trial was also obtained. Outcome measures included a variety of 0 dimensional (OD) measures such as center of pressure (COP) RMS, peak amplitude, velocities, pathlength, and electromyographic (EMG) RMS, and peak amplitudes. These measures were obtained during epochs associated with the response to the perturbations: baseline, response, and recovery. T-tests were used to explore potential statistical differences between the exoskeleton and no exoskeleton conditions. Time series waveforms (1D) of the COP and EMG datamore »were also analyzed. Statistical parametric mapping (SPM) was used to evaluate the 1D COP and EMG waveforms obtained during the epochs with and without wearing the exoskeleton. The results indicated that during quiet stance, COP velocity was increased while wearing the exoskeleton, but the magnitude of sway was unchanged. The OD COP measures revealed that wearing the exoskeleton significantly reduced the sway magnitude and velocity in response to the perturbations. There were no systematic effects of wearing the exoskeleton on EMG. SPM analysis revealed that there was a range of individual responses; both behaviorally (COP) and among neuromuscular activation patterns (EMG). Using both the OD and 1D measures provided a more comprehensive representation of how wearing the exoskeleton impacts the responses to posterior perturbations. This study supports a growing body of evidence that exoskeletons must be personalized to meet the specific capabilities and needs of each individual end-user.« less
  4. Abstract Despite the promise of powered lower limb prostheses, existing controllers do not assist many daily activities that require continuous control of prosthetic joints according to human states and environments. The objective of this case study was to investigate the feasibility of direct, continuous electromyographic (dEMG) control of a powered ankle prosthesis, combined with physical therapist-guided training, for improved standing postural control in an individual with transtibial amputation. Specifically, EMG signals of the residual antagonistic muscles (i.e. lateral gastrocnemius and tibialis anterior) were used to proportionally drive pneumatical artificial muscles to move a prosthetic ankle. Clinical-based activities were used in the training and evaluation protocol of the control paradigm. We quantified the EMG signals in the bilateral shank muscles as well as measures of postural control and stability. Compared to the participant’s daily passive prosthesis, the dEMG-controlled ankle, combined with the training, yielded improved clinical balance scores and reduced compensation from intact joints. Cross-correlation coefficient of bilateral center of pressure excursions, a metric for quantifying standing postural control, increased to .83(±.07) when using dEMG ankle control ( passive device: .39(±.29)) . We observed synchronized activation of homologous muscles, rapid improvement in performance on the first day of the training formore »load transfer tasks, and further improvement in performance across training days (p = .006). This case study showed the feasibility of this dEMG control paradigm of a powered prosthetic ankle to assist postural control. This study lays the foundation for future study to extend these results through the inclusion of more participants and activities.« less
  5. The purpose of this study was to evaluate the use of compressible soft robotic sensors (C-SRS) in determining plantar pressure to infer vertical and shear forces in wearable technology: A ground reaction pressure sock (GRPS). To assess pressure relationships between C-SRS, pressure cells on a BodiTrakTM Vector Plate, and KistlerTM Force Plates, thirteen volunteers performed three repetitions of three different movements: squats, shifting center-of-pressure right to left foot, and shifting toes to heels with C-SRS in both anterior–posterior (A/P) and medial–lateral (M/L) sensor orientations. Pearson correlation coefficient of C-SRS to BodiTrakTM Vector Plate resulted in an average R-value greater than 0.70 in 618/780 (79%) of sensor to cell comparisons. An average R-value greater than 0.90 was seen in C-SRS comparison to KistlerTM Force Plates during shifting right to left. An autoregressive integrated moving average (ARIMA) was conducted to identify and estimate future C-SRS data. No significant differences were seen in sensor orientation. Sensors in the A/P orientation reported a mean R2 value of 0.952 and 0.945 in the M/L sensor orientation, reducing the effectiveness to infer shear forces. Given the high R values, the use of C-SRSs to infer normal pressures appears to make the development of the GRPS feasible.