skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution
Advances in sequencing techniques and statistical methods have made it possible not only to predict sequences of ancestral proteins but also to identify thousands of mutations in the human exome, some of which are disease associated. These developments have motivated numerous theories and raised many questions regarding the fundamental principles behind protein evolution, which have been traditionally investigated horizontally using the tip of the phylogenetic tree through comparative studies of extant proteins within a family. In this article, we review a vertical comparison of the modern and resurrected ancestral proteins. We focus mainly on the dynamical properties responsible for a protein's ability to adapt new functions in response to environmental changes. Using the Dynamic Flexibility Index and the Dynamic Coupling Index to quantify the relative flexibility and dynamic coupling at a site-specific, single-amino-acid level, we provide evidence that the migration of hinges, which are often functionally critical rigid sites, is a mechanism through which proteins can rapidly evolve. Additionally, we show that disease-associated mutations in proteins often result in flexibility changes even at positions distal from mutational sites, particularly in the modulation of active site dynamics.  more » « less
Award ID(s):
1934848
PAR ID:
10175380
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual Review of Biophysics
Volume:
49
Issue:
1
ISSN:
1936-122X
Page Range / eLocation ID:
267 to 288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wallqvist, Anders (Ed.)
    Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease. 
    more » « less
  2. Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations. 
    more » « less
  3. Abstract Mutations in human proteins lead to diseases. The structure of these proteins can help understand the mechanism of such diseases and develop therapeutics against them. With improved deep learning techniques, such as RoseTTAFold and AlphaFold, we can predict the structure of proteins even in the absence of structural homologs. We modeled and extracted the domains from 553 disease-associated human proteins without known protein structures or close homologs in the Protein Databank. We noticed that the model quality was higher and the Root mean square deviation (RMSD) lower between AlphaFold and RoseTTAFold models for domains that could be assigned to CATH families as compared to those which could only be assigned to Pfam families of unknown structure or could not be assigned to either. We predicted ligand-binding sites, protein–protein interfaces and conserved residues in these predicted structures. We then explored whether the disease-associated missense mutations were in the proximity of these predicted functional sites, whether they destabilized the protein structure based on ddG calculations or whether they were predicted to be pathogenic. We could explain 80% of these disease-associated mutations based on proximity to functional sites, structural destabilization or pathogenicity. When compared to polymorphisms, a larger percentage of disease-associated missense mutations were buried, closer to predicted functional sites, predicted as destabilizing and pathogenic. Usage of models from the two state-of-the-art techniques provide better confidence in our predictions, and we explain 93 additional mutations based on RoseTTAFold models which could not be explained based solely on AlphaFold models. 
    more » « less
  4. Abstract We investigated the relationship between mutations and dynamics inEscherichia colidihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position‐specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild‐type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCIasym) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCIasymmetric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics‐based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity. 
    more » « less
  5. Abstract Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as “on‐path” were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16‐N21, bound to Group I peptides, while N21 did not. Here, we identified single‐point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic‐based computational design. Comparison of the docked position of the CC16‐N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16‐N21. We found that swapping these positions in N21 with matched residues from CC16‐N21 recovers nature‐like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins. 
    more » « less