skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes
Abstract We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat ΛCDM cosmology, we find $$H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$$, a $$2.4{{\ \rm per\ cent}}$$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73–78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints.  more » « less
Award ID(s):
1906976 1907396
PAR ID:
10175669
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine the measured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the ‘effective’ time-delay distance corresponding to the redshifts of the deflector and the lensed quasar $$D_{\Delta t}^{\rm eff}=$$3382_{-115}^{+146}$$ Mpc and the angular diameter distance to the deflector Dd = $$1711_{-280}^{+376}$$ Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H0= $$74.2_{-3.0}^{+2.7}$$ km s−1 Mpc−1 assuming a flat ΛCDM cosmology and a uniform prior for Ωm as $$\Omega _{\rm m} \sim \mathcal {U}(0.05, 0.5)$$. This measurement gives the most precise constraint on H0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2σ discrepancy from the cosmic microwave background measurement. 
    more » « less
  2. Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of two fundamental distance scales set by the sound horizon r d and the Hubble constant H 0 , suggests new physics beyond the Standard Model, departures from concordance cosmology, or residual systematics. Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion history of the Universe and the inferred cosmological parameters. Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the tip of the red giant branch. Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance indicators, we obtained a joint and self-consistent measurement of H 0 and r d at low redshift, independent of cosmological models and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four extensions of the standard ΛCDM model. Results. The sound horizon from our different measurements is r d  = (137 ± 3 stat.  ± 2 syst. ) Mpc based on absolute distance calibration from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H 0 and r d ranges between 2.3 and 5.1 σ , and it is independent of changes to the low-redshift expansion history. We find that modifications of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve the tension in H 0 , while the tension in r d remains unchanged. Pre-recombination extensions (with early dark energy or the effective number of neutrinos N eff  = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included. Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations. New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound horizon derived from the CMB and other cosmological probes. 
    more » « less
  3. Abstract We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0 CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s −1 Mpc −1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s −1 Mpc −1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model. 
    more » « less
  4. Abstract We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $$4784_{-248}^{+399}~\mathrm{Mpc}$$, an average precision of $$6.6{{\ \rm per\ cent}}$$. This translates to a Hubble constant $$H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII). 
    more » « less
  5. Abstract The Dark Energy Spectroscopic Instrument (DESI) collaboration measured a tight relation between the Hubble constant (H0) and the distance to the Coma cluster using the fundamental plane (FP) relation of the deepest, most homogeneous sample of early-type galaxies. To determineH0, we measure the distance to Coma by several independent routes, each with its own geometric reference. We measure the most precise distance to Coma from 13 Type Ia supernovae (SNe Ia) in the cluster with a mean standardized brightness of m B 0 = 15.710 ± 0.040 mag. Calibrating the absolute magnitude of SNe Ia with the Hubble Space Telescope (HST) distance ladder yieldsDComa = 98.5 ± 2.2 Mpc, consistent with its canonical value of 95–100 Mpc. This distance results inH0 = 76.5 ± 2.2 km s−1Mpc−1from the DESI FP relation. Inverting the DESI relation by calibrating it instead to the Planck+ΛCDM value ofH0 = 67.4 km s−1Mpc−1implies a much greater distance to Coma,DComa = 111.8 ± 1.8 Mpc, 4.6σbeyond a joint, direct measure. Independent of SNe Ia, the HST Key Project FP relation as calibrated by Cepheids, the tip of the red giant branch from JWST, or HST near-infrared surface brightness fluctuations all yieldDComa < 100 Mpc, in joint tension themselves with the Planck-calibrated route at >3σ. From a broad array of distance estimates compiled back to 1990, it is hard to see how Coma could be located as far as the Planck+ΛCDM expectation of >110 Mpc. By extending the Hubble diagram to Coma, a well-studied location in our own backyard whose distance was in good accord well before the Hubble tension, DESI indicates a more pervasive conflict between our knowledge of local distances and cosmological expectations. We expect future programs to refine the distance to Coma and nearer clusters to help illuminate this new local window on the Hubble tension. 
    more » « less