skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fractional Operators Applied to Geophysical Electromagnetics
SUMMARY A growing body of applied mathematics literature in recent years has focused on the application of fractional calculus to problems of anomalous transport. In these analyses, the anomalous transport (of charge, tracers, fluid, etc.) is presumed attributable to long–range correlations of material properties within an inherently complex, and in some cases self-similar, conducting medium. Rather than considering an exquisitely discretized (and computationally intractable) representation of the medium, the complex and spatially correlated heterogeneity is represented through reformulation of the governing equation for the relevant transport physics such that its coefficients are, instead, smooth but paired with fractional–order space derivatives. Here we apply these concepts to the scalar Helmholtz equation and its use in electromagnetic interrogation of Earth’s interior through the magnetotelluric method. We outline a practical algorithm for solving the Helmholtz equation using spectral methods coupled with finite element discretizations. Execution of this algorithm for the magnetotelluric problem reveals several interesting features observable in field data: long–range correlation of the predicted electromagnetic fields; a power–law relationship between the squared impedance amplitude and squared wavenumber whose slope is a function of the fractional exponent within the governing Helmholtz equation; and, a non–constant apparent resistivity spectrum whose variability arises solely from the fractional exponent. In geologic settings characterized by self–similarity (e.g. fracture systems; thick and richly–textured sedimentary sequences, etc.) we posit that these diagnostics are useful for geologic characterization of features far below the typical resolution limit of electromagnetic methods in geophysics.  more » « less
Award ID(s):
1818772
PAR ID:
10175695
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Journal International
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A plethora of complex dynamical systems from disordered media to biological systems exhibit mathematical characteristics (e.g., long-range dependence, self-similar and power law magnitude increments) that are well-fitted by fractional partial differential equations (PDEs). For instance, some biological systems displaying an anomalous diffusion behavior, which is characterized by a non-linear mean-square displacement relation, can be mathematically described by fractional PDEs. In general, the PDEs represent various physical laws or rules governing complex dynamical systems. Since prior knowledge about the mathematical equations describing complex dynamical systems in biology, healthcare, disaster mitigation, transportation, or environmental sciences may not be available, we aim to provide algorithmic strategies to discover the integer or fractional PDEs and their parameters from system's evolution data. Toward deciphering non-trivial mechanisms driving a complex system, we propose a data-driven approach that estimates the parameters of a fractional PDE model. We study the space-time fractional diffusion model that describes a complex stochastic process, where the magnitude and the time increments are stable processes. Starting from limited time-series data recorded while the system is evolving, we develop a fractional-order moments-based approach to determine the parameters of a generalized fractional PDE. We formulate two optimization problems to allow us to estimate the arguments of the fractional PDE. Employing extensive simulation studies, we show that the proposed approach is effective at retrieving the relevant parameters of the space-time fractional PDE. The presented mathematical approach can be further enhanced and generalized to include additional operators that may help to identify the dominant rule governing the measurements or to determine the degree to which multiple physical laws contribute to the observed dynamics. 
    more » « less
  2. Abstract It has been suggested before that small-scale magnetic flux rope (SMFR) structures in the solar wind can temporarily trap energetic charged particles. We present the derivation of a new fractional Parker equation for energetic-particle interaction with SMFRs from our pitch-angle-dependent fractional diffusion-advection equation that can account for such trapping effects. The latter was derived previously in le Roux & Zank from the first principles starting with the standard focused transport equation. The new equation features anomalous advection and diffusion terms. It suggests that energetic-particle parallel transport occurs with a decaying efficiency of advection effects as parallel superdiffusion becomes more dominant at late times. Parallel superdiffusion can be linked back to underlying anomalous pitch-angle transport, which might be subdiffusive during interaction with quasi-helical coherent SMFRs. We apply the new equation to time-dependent superdiffusive shock acceleration at a parallel shock. The results show that the superdiffusive-shock-acceleration timescale is fractional, the net fractional differential particle flux is conserved across the shock ignoring particle injection at the shock, and the accelerated particle spectrum at the shock converges to the familiar power-law spectrum predicted by standard steady-state diffusive-shock-acceleration theory at late times. Upstream, as parallel superdiffusion progressively dominates the advection of energetic particles, their spatial distributions decay on spatial scales that grow with time. Furthermore, superdiffusive parallel shock acceleration is found to be less efficient if parallel anomalous diffusion is more superdiffusive, while perpendicular particle escape from the shock, thought to be subdiffusive during SMFR interaction, is reduced when increasingly subdiffusive. 
    more » « less
  3. Abstract The inverse scattering transform allows explicit construction of solutions to many physically significant nonlinear wave equations. Notably, this method can be extended to fractional nonlinear evolution equations characterized by anomalous dispersion using completeness of suitable eigenfunctions of the associated linear scattering problem. In anomalous diffusion, the mean squared displacement is proportional to t α , α > 0, while in anomalous dispersion, the speed of localized waves is proportional to A α , where A is the amplitude of the wave. Fractional extensions of the modified Korteweg–deVries (mKdV), sine-Gordon (sineG) and sinh-Gordon (sinhG) and associated hierarchies are obtained. Using symmetries present in the linear scattering problem, these equations can be connected with a scalar family of nonlinear evolution equations of which fractional mKdV (fmKdV), fractional sineG (fsineG), and fractional sinhG (fsinhG) are special cases. Completeness of solutions to the scalar problem is obtained and, from this, the nonlinear evolution equation is characterized in terms of a spectral expansion. In particular, fmKdV, fsineG, and fsinhG are explicitly written. One-soliton solutions are derived for fmKdV and fsineG using the inverse scattering transform and these solitons are shown to exhibit anomalous dispersion. 
    more » « less
  4. Abstract We introduce the stochastic process of incremental multifractional Brownian motion (IMFBM), which locally behaves like fractional Brownian motion with a given local Hurst exponent and diffusivity. When these parameters change as function of time the process responds to the evolution gradually: only new increments are governed by the new parameters, while still retaining a power-law dependence on the past of the process. We obtain the mean squared displacement and correlations of IMFBM which are given by elementary formulas. We also provide a comparison with simulations and introduce estimation methods for IMFBM. This mathematically simple process is useful in the description of anomalous diffusion dynamics in changing environments, e.g. in viscoelastic systems, or when an actively moving particle changes its degree of persistence or its mobility. 
    more » « less
  5. Abstract In this article, using that the fractional Laplacian can be factored into a product of the divergence operator, a Riesz potential operator and the gradient operator, we introduce an anomalous fractional diffusion operator, involving a matrixK(x), suitable when anomalous diffusion is being studied in a non homogeneous medium. For the case ofK(x) a constant, symmetric positive definite matrix we show that the fractional Poisson equation is well posed, and determine the regularity of the solution in terms of the regularity of the right hand side function. 
    more » « less