skip to main content


Title: Privacy Protection for Audio Sensing Against Multi-Microphone Adversaries
Abstract Audio-based sensing enables fine-grained human activity detection, such as sensing hand gestures and contact-free estimation of the breathing rate. A passive adversary, equipped with microphones, can leverage the ongoing sensing to infer private information about individuals. Further, with multiple microphones, a beamforming-capable adversary can defeat the previously-proposed privacy protection obfuscation techniques. Such an adversary can isolate the obfuscation signal and cancel it, even when situated behind a wall. AudioSentry is the first to address the privacy problem in audio sensing by protecting the users against a multi-microphone adversary. It utilizes the commodity and audio-capable devices, already available in the user’s environment, to form a distributed obfuscator array. AudioSentry packs a novel technique to carefully generate obfuscation beams in different directions, preventing the multi-microphone adversary from canceling the obfuscation signal. AudioSentry follows by a dynamic channel estimation scheme to preserve authorized sensing under obfuscation. AudioSentry offers the advantages of being practical to deploy and effective against an adversary with a large number of microphones. Our extensive evaluations with commodity devices show that protects the user’s privacy against a 16-microphone adversary with only four commodity obfuscators, regardless of the adversary’s position. AudioSentry provides its privacy-preserving features with little overhead on the authorized sensor.  more » « less
Award ID(s):
1838733
NSF-PAR ID:
10175838
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Volume:
2019
Issue:
2
ISSN:
2299-0984
Page Range / eLocation ID:
146 to 165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Voice-activated commands have become a key feature of popular devices such as smartphones, home assistants, and wearables. For convenience, many people configure their devices to be ‘always on’ and listening for voice commands from the user using a trigger phrase such as “Hey Siri,” “Okay Google,” or “Alexa.” However, false positives for these triggers often result in privacy violations with conversations being inadvertently uploaded to the cloud. In addition, malware that can record one’s conversations remains a signifi-cant threat to privacy. Unlike with cameras, which people can physically obscure and be assured of their privacy, people do not have a way of knowing whether their microphone is indeed off and are left with no tangible defenses against voice based attacks. We envision a general-purpose physical defense that uses a speaker to inject specialized obfuscating ‘babble noise’ into the microphones of devices to protect against automated and human based attacks. We present a comprehensive study of how specially crafted, personalized ‘babble’ noise (‘MyBabble’) can be effective at moderate signal-to-noise ratios and can provide a viable defense against microphone based eavesdropping attacks. 
    more » « less
  2. Smart speakers come with always-on microphones to facilitate voice-based interaction. To address user privacy concerns, existing devices come with a number of privacy features: e.g., mute buttons and local trigger-word detection modules. But it is difficult for users to trust that these manufacturer-provided privacy features actually work given that there is a misalignment of incentives: Google, Meta, and Amazon benefit from collecting personal data and users know it. What’s needed is perceptible assurance — privacy features that users can, through physical perception, verify actually work. To that end, we introduce, implement, and evaluate the idea of “intentionally-powered” microphones to provide users with perceptible assurance of privacy with smart speakers. We employed an iterative-design process to develop Candid Mic, a battery-free, wireless microphone that can only be powered by harvesting energy from intentional user interactions. Moreover, users can visually inspect the (dis)connection between the energy harvesting module and the microphone. Through a within-subjects experiment, we found that Candid Mic provides users with perceptible assurance about whether the microphone is capturing audio or not, and improves user trust in using smart speakers relative to mute button interfaces. 
    more » « less
  3. Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser 
    more » « less
  4. The microphone systems employed by smart devices such as cellphones and tablets require case penetrations that leave them vulnerable to environmental damage. A structural sensor mounted on the back of the display screen can be employed to record audio by capturing the bending vibration signals induced in the display panel by an incident acoustic wave - enabling a functional microphone on a fully sealed device. Distributed piezoelectric sensing elements and low-noise accelerometers were bonded to the surfaces of several different panels and used to record acoustic speech signals. The quality of the recorded signals was assessed using the speech transmission index, and the recordings were transcribed to text using an automatic speech recognition system. Although the quality of the speech signals recorded by the piezoelectric sensors was reduced compared to the quality of speech recorded by the accelerometers, the word-error-rate of each transcription increased only by approximately 2% on average, suggesting that distributed piezoelectric sensors can be used as a low-cost surface microphone for smart devices that employ automatic speech recognition. A method of crosstalk cancellation was also implemented to enable the simultaneous recording and playback of audio signals by an array of piezoelectric elements and evaluated by the measured improvement in the recording’s signal-to-interference ratio. 
    more » « less
  5. Smart voice assistants such as Amazon Alexa and Google Home are becoming increasingly pervasive in our everyday environments. Despite their benefits, their miniaturized and embedded cameras and microphones raise important privacy concerns related to surveillance and eavesdropping. Recent work on the privacy concerns of people in the vicinity of these devices has highlighted the need for 'tangible privacy', where control and feedback mechanisms can provide a more assured sense of whether the camera or microphone is 'on' or 'off'. However, current designs of these devices lack adequate mechanisms to provide such assurances. To address this gap in the design of smart voice assistants, especially in the case of disabling microphones, we evaluate several designs that incorporate (or not) tangible control and feedback mechanisms. By comparing people's perceptions of risk, trust, reliability, usability, and control for these designs in a between-subjects online experiment (N=261), we find that devices with tangible built-in physical controls are perceived as more trustworthy and usable than those with non-tangible mechanisms. Our findings present an approach for tangible, assured privacy especially in the context of embedded microphones.

     
    more » « less