Smart speaker voice assistants (VAs) such as Amazon Echo and Google Home have been widely adopted due to their seamless integration with smart home devices and the Internet of Things (IoT) technologies. These VA services raise privacy concerns, especially due to their access to our speech. This work considers one such use case: the unaccountable and unauthorized surveillance of a user's emotion via speech emotion recognition (SER). This paper presents DARE-GP, a solution that creates additive noise to mask users' emotional information while preserving the transcription-relevant portions of their speech. DARE-GP does this by using a constrained genetic programming approach to learn the spectral frequency traits that depict target users' emotional content, and then generating a universal adversarial audio perturbation that provides this privacy protection. Unlike existing works, DARE-GP provides: a) real-time protection of previously unheard utterances, b) against previously unseen black-box SER classifiers, c) while protecting speech transcription, and d) does so in a realistic, acoustic environment. Further, this evasion is robust against defenses employed by a knowledgeable adversary. The evaluations in this work culminate with acoustic evaluations against two off-the-shelf commercial smart speakers using a small-form-factor (raspberry pi) integrated with a wake-word system to evaluate the efficacy of its real-world, real-time deployment.
more »
« less
Preech: A System for Privacy-Preserving Speech Transcription
New advances in machine learning have made Automated Speech Recognition (ASR) systems practical and more scalable. These systems, however, pose serious privacy threats as speech is a rich source of sensitive acoustic and textual information. Although offline and open-source ASR eliminates the privacy risks, its transcription performance is inferior to that of cloud-based ASR systems, especially for real-world use cases. In this paper, we propose Prεεch, an end-to-end speech transcription system which lies at an intermediate point in the privacy-utility spectrum. It protects the acoustic features of the speakers’ voices and protects the privacy of the textual content at an improved performance relative to offline ASR. Additionally, Prεεch provides several control knobs to allow customizable utility-usability-privacy trade-off. It relies on cloud-based services to transcribe a speech file after applying a series of privacy-preserving operations on the user’s side. We perform a comprehensive evaluation of Prεεch, using diverse real-world datasets, that demonstrates its effectiveness. Prεεch provides transcription at a 2% to 32.25% (mean 17.34%) relative improvement in word error rate over Deep Speech, while fully obfuscating the speakers' voice biometrics and allowing only a differentially private view of the textual content.
more »
« less
- PAR ID:
- 10175842
- Date Published:
- Journal Name:
- 29th USENIX Security Symposium (USENIX Security 20)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)“Transcription bottlenecks”, created by a shortage of effective human transcribers are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxochitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.more » « less
-
When dealing with overlapped speech, the performance of automatic speech recognition (ASR) systems substantially degrades as they are designed for single-talker speech. To enhance ASR performance in conversational or meeting environments, continuous speaker separation (CSS) is commonly employed. However, CSS requires a short separation window to avoid many speakers inside the window and sequential grouping of discontinuous speech segments. To address these limitations, we introduce a new multi-channel framework called “speaker separation via neural diarization” (SSND) for meeting environments. Our approach utilizes an end-to-end diarization system to identify the speech activity of each individual speaker. By leveraging estimated speaker boundaries, we generate a sequence of embeddings, which in turn facilitate the assignment of speakers to the outputs of a multi-talker separation model. SSND addresses the permutation ambiguity issue of talker-independent speaker separation during the diarization phase through location-based training, rather than during the separation process. This unique approach allows multiple non-overlapped speakers to be assigned to the same output stream, making it possible to efficiently process long segments—a task impossible with CSS. Additionally, SSND is naturally suitable for speaker-attributed ASR. We evaluate our proposed diarization and separation methods on the open LibriCSS dataset, advancing state-of-the-art diarization and ASR results by a large margin.more » « less
-
null (Ed.)Most current speech technology systems are designed to operate well even in the presence of multiple active speakers. However, most solutions assume that the number of co-current speakers is known. Unfortunately, this information might not always be available in real-world applications. In this study, we propose a real-time, single-channel attention-guided Convolutional Neural Network (CNN) to estimate the number of active speakers in overlapping speech. The proposed system extracts higher-level information from the speech spectral content using a CNN model. Next, the attention mechanism summarizes the extracted information into a compact feature vector without losing critical information. Finally, the active speakers are classified using a fully connected network. Experiments on simulated overlapping speech using WSJ corpus show that the attention solution is shown to improve the performance by almost 3% absolute over conventional temporal average pooling. The proposed Attention-guided CNN achieves 76.15% for both Weighted Accuracy and average Recall, and 75.80% Precision on speech segments as short as 20 frames (i.e., 200 ms). All the classification metrics exceed 92% for the attention-guided model in offline scenarios where the input signal is more than 100 frames long (i.e., 1s).more » « less
-
null (Ed.)Most current speech technology systems are designed to operate well even in the presence of multiple active speakers. However, most solutions assume that the number of co-current speakers is known. Unfortunately, this information might not always be available in real-world applications. In this study, we propose a real-time, single-channel attention-guided Convolutional Neural Network (CNN) to estimate the number of active speakers in overlapping speech. The proposed system extracts higher-level information from the speech spectral content using a CNN model. Next, the attention mechanism summarizes the extracted information into a compact feature vector without losing critical information. Finally, the active speakers are classified using a fully connected network. Experiments on simulated overlapping speech using WSJ corpus show that the attention solution is shown to improve the performance by almost 3% absolute over conventional temporal average pooling. The proposed Attention-guided CNN achieves 76.15% for both Weighted Accuracy and average Recall, and 75.80% Precision on speech segments as short as 20 frames (i.e., 200 ms). All the classification metrics exceed 92% for the attention-guided model in offline scenarios where the input signal is more than 100 frames long (i.e., 1s).more » « less
An official website of the United States government

