skip to main content


Title: The molecular basis of venom resistance in a rattlesnake‐squirrel predator‐prey system
Abstract

Understanding how interspecific interactions mould the molecular basis of adaptations in coevolving species is a long‐sought goal of evolutionary biology. Venom in predators and venom resistance proteins in prey are coevolving molecular phenotypes, and while venoms are highly complex mixtures it is unclear if prey respond with equally complex resistance traits. Here, we use a novel molecular methodology based on protein affinity columns to capture and identify candidate blood serum resistance proteins (“venom interactive proteins” [VIPs]) in California Ground Squirrels (Otospermophilus beecheyi) that interact with venom proteins from their main predator, Northern Pacific Rattlesnakes (Crotalus o. oreganus). This assay showed that serum‐based resistance is both population‐ and species‐specific, with serum proteins from ground squirrels showing higher binding affinities for venom proteins of local snakes compared to allopatric individuals. Venom protein specificity assays identified numerous and diverse candidate prey resistance VIPs but also potential targets of venom in prey tissues. Many specific VIPs bind to multiple snake venom proteins and, conversely, single venom proteins bind multiple VIPs, demonstrating that a portion of the squirrel blood serum “resistome” involves broad‐based inhibition of nonself proteins and suggests that resistance involves a toxin scavenging mechanism. Analyses of rates of evolution of VIP protein homologues in related mammals show that most of these proteins evolve under purifying selection possibly due to molecular constraints that limit the evolutionary responses of prey to rapidly evolving snake venom proteins. Our method represents a general approach to identify specific proteins involved in co‐evolutionary interactions between species at the molecular level.

 
more » « less
Award ID(s):
1638872
NSF-PAR ID:
10456313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
29
Issue:
15
ISSN:
0962-1083
Page Range / eLocation ID:
p. 2871-2888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yoder, Anne (Ed.)
    Abstract Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey. 
    more » « less
  2. Abstract

    Salinity tolerance in fish involves a suite of physiological changes, but a cohesive theory leading to a mechanistic understanding at the organismal level is lacking. To examine the potential of adapting energy homeostasis theory in the context of salinity stress in teleost fish,Oreochromis mossambicuswere acclimated to hypersalinity at multiple rates and durations to determine salinity ranges of tolerance and resistance. Over 3000 proteins were quantified simultaneously to analyze molecular phenotypes associated with hypersalinity. A species‐ and tissue‐specific data‐independent acquisition (DIA) assay library of MSMS spectra was created. Protein networks representing complex molecular phenotypes associated with salinity acclimation were generated.O. mossambicushas a wide “zone of resistance” from 75 g/kg salinity to 120 g/kg. Crossing into the zone of resistance resulted in marked phenotypic changes including blood osmolality over 400 mOsm/kg, reduced body condition, and cessation of feeding. Protein networks impacted by hypersalinity consist of electron transport chain (ETC) proteins and specific osmoregulatory proteins. Cytoskeletal, cell adhesion, and extracellular matrix proteins are enriched in networks that are sensitive to the critical salinity threshold. These network analyses identify specific proteome changes that are associated with distinct zones described by energy homeostasis theory and distinguish them from general hypersalinity‐induced proteome changes.

     
    more » « less
  3. Abstract Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline. 
    more » « less
  4. Abstract Background

    Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake (Crotalus viridis viridis) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom.

    Results

    Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition.

    Conclusions

    Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.

     
    more » « less
  5. Abstract

    To understand how diverse mutualisms coevolve and how species adapt to complex environments, a description of the underlying genetic basis of the traits involved must be provided. For example, in diverse coevolving mutualisms, such as the interaction of host plants with a suite of symbiotic mycorrhizal fungi, a key question is whether host plants can coevolve independently with multiple species of symbionts, which depends on whether those interactions are governed independently by separate genes or pleiotropically by shared genes. To provide insight into this question, we employed an association mapping approach in a clonally replicated field experiment of loblolly pine (Pinus taedaL.) to identify genetic components of host traits governing ectomycorrhizal (EM) symbioses (mycorrhizal traits). The relative abundances of different EM fungi as well as the total number of root tips per cm root colonized by EM fungi were analyzed as separate mycorrhizal traits of loblolly pine. Single‐nucleotide polymorphisms (SNPs) within candidate genes of loblolly pine were associated with loblolly pine mycorrhizal traits, mapped to the loblolly pine genome, and their putative protein function obtained when available. The results support the hypothesis that ectomycorrhiza formation is governed by host genes of large effect that apparently have independent influences on host interactions with different symbiont species.

     
    more » « less