skip to main content


Title: Learning Robustness with Bounded Failure: An Iterative MPC Approach
We propose an approach to design a Model Predictive Controller (MPC) for constrained Linear Time Invariant systems performing an iterative task. The system is subject to an additive disturbance, and the goal is to learn to satisfy state and input constraints robustly. Using disturbance measurements after each iteration, we construct Confidence Support sets, which contain the true support of the disturbance distribution with a given probability. As more data is collected, the Confidence Supports converge to the true support of the disturbance. This enables design of an MPC controller that avoids conservative estimate of the disturbance support, while simultaneously bounding the probability of constraint violation. The efficacy of the proposed approach is then demonstrated with a detailed numerical example.  more » « less
Award ID(s):
1931853
PAR ID:
10176535
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IFACPapersOnLine
ISSN:
2405-8963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deterministic and stochastic approaches to handle uncertainties may incur very different complexities in computation and memory, in addition to different uncertainty models. For linear systems with delay and rate constrained communications between the observer and controller, previous work shows that the deterministic approach l_infty control has low complexity but only handles bounded disturbance. In this paper, we take a stochastic approach and propose an LQ controller that can handle arbitrarily large disturbance but has large complexity in time/space. The differences in robustness and complexity of the l_infty and LQ controllers motivate the design of a hybrid controller that interpolates between the two: The l_infty controller is applied when the disturbance is not too large (normal mode) and the LQ controller is resorted to otherwise (acute mode). We characterize the switching behavior between the normal and acute modes. Using theoretical bounds and supplementary numerical experiments, we show that the hybrid controller can achieve a sweet spot in robustness-complexity tradeoff, ie, reject occasional large disturbance while operating with low complexity most of the time. 
    more » « less
  2. We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%. 
    more » « less
  3. Low voltage microgrid systems are characterized by high sensitivity to both active and reactive power for voltage support. Also, the operational conditions of microgrids connected to active distribution systems are time-varying. Thus, the ideal controller to provide voltage support must be flexible enough to handle technical and operational constraints. This paper proposes a model predictive control (MPC) approach to provide dynamic voltage support using energy storage systems. This approach uses a simplified predictive model of the system along with operational constraints to solve an online finite-horizon optimization problem. Control signals are then computed such that the defined cost function is minimized. By proper selection of MPC weighting parameters, the quality of service provided can be adjusted to achieve the desired performance. A simulation study in Matlab/Simulink validates the proposed approach for a simplified version of a 100 kVA, 208 V microgrid using typical parameters. Results show that performance of the voltage support can be adjusted depending on the choice of weight and constraints of the controller. 
    more » « less
  4. Abstract For many planar bipedal models, each step is divided into a finite time single support period and an instantaneous double support period. During single support, the biped is typically underactuated and thus has limited ability to reject disturbances. The instantaneous nature of the double support period prevents nonimpulsive control during this period. However, if the double support period is expanded to finite time, it becomes overactuated. While it has been hypothesized that this overactuation during a finite-time double support period may improve disturbance rejection capabilities, this has not yet been tested. This paper presents a refined biped model by developing a finite-time, adaptive double support controller capable of handling the overactuation and limiting slip. Using simulations, we quantify the disturbance rejection capabilities of this controller and directly compare them to a typical, instantaneous double support model for a range of gait speeds and perturbations. We find that the finite-time double support controller increased the walking stability of the biped in approximately half of the cases, indicating that a finite-time double support period does not automatically increase disturbance rejection capabilities. We also find that the timing and magnitude of the perturbation can affect if a finite-time double support period enhances stability. Finally, we demonstrate that the adaptive controller reduces slipping. 
    more » « less
  5. This work explores an innovative algorithm designed to enhance the mobility of underactuated bipedal robots across challenging terrains, especially when navigating through spaces with constrained opportunities for foot support, like steps or stairs. By combining ankle torque with a refined angular momentum-based linear inverted pendulum model (ALIP), our method allows variability in the robot's center of mass height. We employ a dual-strategy controller that merges virtual constraints for precise motion regulation across essential degrees of freedom with an ALIP-centric model predictive control (MPC) framework, aimed at enforcing gait stability. The effectiveness of our feedback design is demonstrated through its application on the Cassie bipedal robot, which features 20 degrees of freedom. Key to our implementation is the development of tailored nominal trajectories and an optimized MPC that reduces the execution time to under 500 microseconds--and, hence, is compatible with Cassie's controller update frequency. This paper not only showcases the successful hardware deployment but also demonstrates a new capability, a bipedal robot using a moving walkway. 
    more » « less