skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust subspace recovery layer for unsupervised anomaly detection
We propose a neural network for unsupervised anomaly detection with a novel robust subspace recovery layer (RSR layer). This layer seeks to extract the underlying subspace from a latent representation of the given data and removes outliers that lie away from this subspace. It is used within an autoencoder. The encoder maps the data into a latent space, from which the RSR layer extracts the subspace. The decoder then smoothly maps back the underlying subspace to a “manifold” close to the original inliers. Inliers and outliers are distinguished according to the distances between the original and mapped positions (small for inliers and large for outliers). Extensive numerical experiments with both image and document datasets demonstrate state-of-the-art precision and recall.  more » « less
Award ID(s):
1830418
PAR ID:
10176546
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Eighth International Conference on Learning Representations
Page Range / eLocation ID:
1-28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of subspace clustering in the presence of outliers. Typically, this scenario is handled through a regularized optimization, whose computational complexity scales polynomially with the size of the data. Further, the regularization terms need to be manually tuned to achieve optimal performance. To circumvent these difficulties, in this paper we propose an outlier removal algorithm based on evaluating a suitable sum-ofsquares polynomial, computed directly from the data. This algorithm only requires performing two singular value decompositions of fixed size, and provides certificates on the probability of misclassifying outliers as inliers. 
    more » « less
  2. This paper addresses the problem of subspace clustering in the presence of outliers. Typically, this scenario is handled through a regularized optimization, whose computational complexity scales polynomially with the size of the data. Further, the regularization terms need to be manually tuned to achieve optimal performance. To circumvent these difficulties, in this paper we propose an outlier removal algorithm based on evaluating a suitable sum-ofsquares polynomial, computed directly from the data. This algorithm only requires performing two singular value decompositions of fixed size, and provides certificates on the probability of misclassifying outliers as inliers. 
    more » « less
  3. null (Ed.)
    Abstract Non-negative matrix factorization and its extensions were applied to various areas (i.e., dimensionality reduction, clustering, etc.). When the original data are corrupted by outliers and noise, most of non-negative matrix factorization methods cannot achieve robust factorization and learn a subspace with binary codes. This paper puts forward a robust semi-supervised non-negative matrix factorization method for binary subspace learning, called RSNMF, for image clustering. For better clustering performance on the dataset contaminated by outliers and noise, we propose a weighted constraint on the noise matrix and impose manifold learning into non-negative matrix factorization. Moreover, we utilize the discrete hashing learning method to constrain the learned subspace, which can achieve a binary subspace from the original data. Experimental results validate the robustness and effectiveness of RSNMF in binary subspace learning and image clustering on the face dataset corrupted by Salt and Pepper noise and Contiguous Occlusion. 
    more » « less
  4. Abstract We develop a convex‐optimization clustering algorithm for heterogeneous financial networks, in the presence of arbitrary or even adversarial outliers. In the stochastic block model with heterogeneity parameters, we penalize nodes whose degree exhibit unusual behavior beyond inlier heterogeneity. We prove that under mild conditions, this method achieves exact recovery of the underlying clusters. In absence of any assumption on outliers, they are shown not to hinder the clustering of the inliers. We test the performance of the algorithm on semi‐synthetic heterogenous networks reconstructed to match aggregate data on the Korean financial sector. Our method allows for recovery of sub‐sectors with significantly lower error rates compared to existing algorithms. For overlapping portfolio networks, we uncover a clustering structure supporting diversification effects in investment management. 
    more » « less
  5. null (Ed.)
    Given a set of 3D to 2D putative matches, labeling the correspondences as inliers or outliers plays a critical role in a wide range of computer vision applications including the Perspective-n-Point (PnP) and object recognition. In this paper, we study a more generalized problem which allows the matches to belong to multiple objects with distinct poses. We propose a deep architecture to simultaneously label the correspondences as inliers or outliers and classify the inliers into multiple objects. Specifically, we discretize the 3D rotation space into twenty convex cones based on the facets of a regular icosahedron. For each facet, a facet classifier is trained to predict the probability of a correspondence being an inlier for a pose whose rotation normal vector points towards this facet. An efficient RANSAC-based post-processing algorithm is also proposed to further process the prediction results and detect the objects. Experiments demonstrate that our method is very efficient compared to existing methods and is capable of simultaneously labeling and classifying the inliers of multiple objects with high precision. 
    more » « less