Purpose Existing algorithms for predicting suicide risk rely solely on data from electronic health records, but such models could be improved through the incorporation of publicly available socioeconomic data – such as financial, legal, life event and sociodemographic data. The purpose of this study is to understand the complex ethical and privacy implications of incorporating sociodemographic data within the health context. This paper presents results from a survey exploring what the general public’s knowledge and concerns are about such publicly available data and the appropriateness of using it in suicide risk prediction algorithms. Design/methodology/approach A survey was developed to measure public opinion about privacy concerns with using socioeconomic data across different contexts. This paper presented respondents with multiple vignettes that described scenarios situated in medical, private business and social media contexts, and asked participants to rate their level of concern over the context and what factor contributed most to their level of concern. Specific to suicide prediction, this paper presented respondents with various data attributes that could potentially be used in the context of a suicide risk algorithm and asked participants to rate how concerned they would be if each attribute was used for this purpose. Findings The authors foundmore »
Public Concern About Monitoring Twitter Users and Their Conversations to Recruit for Clinical Trials: Survey Study
Background Social networks such as Twitter offer the clinical research community a novel opportunity for engaging potential study participants based on user activity data. However, the availability of public social media data has led to new ethical challenges about respecting user privacy and the appropriateness of monitoring social media for clinical trial recruitment. Researchers have voiced the need for involving users’ perspectives in the development of ethical norms and regulations. Objective This study examined the attitudes and level of concern among Twitter users and nonusers about using Twitter for monitoring social media users and their conversations to recruit potential clinical trial participants. Methods We used two online methods for recruiting study participants: the open survey was (1) advertised on Twitter between May 23 and June 8, 2017, and (2) deployed on TurkPrime, a crowdsourcing data acquisition platform, between May 23 and June 8, 2017. Eligible participants were adults, 18 years of age or older, who lived in the United States. People with and without Twitter accounts were included in the study. Results While nearly half the respondents—on Twitter (94/603, 15.6%) and on TurkPrime (509/603, 84.4%)—indicated agreement that social media monitoring constitutes a form of eavesdropping that invades their privacy, over more »
- Award ID(s):
- 1947754
- Publication Date:
- NSF-PAR ID:
- 10176657
- Journal Name:
- Journal of Medical Internet Research
- Volume:
- 21
- Issue:
- 10
- Page Range or eLocation-ID:
- e15455
- ISSN:
- 1438-8871
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction Social media has created opportunities for children to gather social support online (Blackwell et al., 2016; Gonzales, 2017; Jackson, Bailey, & Foucault Welles, 2018; Khasawneh, Rogers, Bertrand, Madathil, & Gramopadhye, 2019; Ponathil, Agnisarman, Khasawneh, Narasimha, & Madathil, 2017). However, social media also has the potential to expose children and adolescents to undesirable behaviors. Research showed that social media can be used to harass, discriminate (Fritz & Gonzales, 2018), dox (Wood, Rose, & Thompson, 2018), and socially disenfranchise children (Page, Wisniewski, Knijnenburg, & Namara, 2018). Other research proposes that social media use might be correlated to the significant increase in suicide rates and depressive symptoms among children and adolescents in the past ten years (Mitchell, Wells, Priebe, & Ybarra, 2014). Evidence based research suggests that suicidal and unwanted behaviors can be promulgated through social contagion effects, which model, normalize, and reinforce self-harming behavior (Hilton, 2017). These harmful behaviors and social contagion effects may occur more frequently through repetitive exposure and modelling via social media, especially when such content goes “viral” (Hilton, 2017). One example of viral self-harming behavior that has generated significant media attention is the Blue Whale Challenge (BWC). The hearsay about this challenge is that individuals at allmore »
-
The growth of technologies promising to infer emotions raises political and ethical concerns, including concerns regarding their accuracy and transparency. A marginalized perspective in these conversations is that of data subjects potentially affected by emotion recognition. Taking social media as one emotion recognition deployment context, we conducted interviews with data subjects (i.e., social media users) to investigate their notions about accuracy and transparency in emotion recognition and interrogate stated attitudes towards these notions and related folk theories. We find that data subjects see accurate inferences as uncomfortable and as threatening their agency, pointing to privacy and ambiguity as desired design principles for social media platforms. While some participants argued that contemporary emotion recognition must be accurate, others raised concerns about possibilities for contesting the technology and called for better transparency. Furthermore, some challenged the technology altogether, highlighting that emotions are complex, relational, performative, and situated. In interpreting our findings, we identify new folk theories about accuracy and meaningful transparency in emotion recognition. Overall, our analysis shows an unsatisfactory status quo for data subjects that is shaped by power imbalances and a lack of reflexivity and democratic deliberation within platform governance.
-
Social media platforms are accused repeatedly of creating environments in which women are bullied and harassed. We argue that online aggression toward women aims to reinforce traditional feminine norms and stereotypes. In a mixed methods study, we find that this type of aggression on Twitter is common and extensive and that it can spread far beyond the original target. We locate over 2.9 million tweets in one week that contain instances of gendered insults (e.g., “bitch,” “cunt,” “slut,” or “whore”)—averaging 419,000 sexist slurs per day. The vast majority of these tweets are negative in sentiment. We analyze the social networks of the conversations that ensue in several cases and demonstrate how the use of “replies,” “retweets,” and “likes” can further victimize a target. Additionally, we develop a sentiment classifier that we use in a regression analysis to compare the negativity of sexist messages. We find that words in a message that reinforce feminine stereotypes inflate the negative sentiment of tweets to a significant and sizeable degree. These terms include those insulting someone’s appearance (e.g., “ugly”), intellect (e.g., “stupid”), sexual experience (e.g., “promiscuous”), mental stability (e.g., “crazy”), and age (“old”). Messages enforcing beauty norms tend to be particularly negative. In sum,more »
-
Background Internet data can be used to improve infectious disease models. However, the representativeness and individual-level validity of internet-derived measures are largely unexplored as this requires ground truth data for study. Objective This study sought to identify relationships between Web-based behaviors and/or conversation topics and health status using a ground truth, survey-based dataset. Methods This study leveraged a unique dataset of self-reported surveys, microbiological laboratory tests, and social media data from the same individuals toward understanding the validity of individual-level constructs pertaining to influenza-like illness in social media data. Logistic regression models were used to identify illness in Twitter posts using user posting behaviors and topic model features extracted from users’ tweets. Results Of 396 original study participants, only 81 met the inclusion criteria for this study. Of these participants’ tweets, we identified only two instances that were related to health and occurred within 2 weeks (before or after) of a survey indicating symptoms. It was not possible to predict when participants reported symptoms using features derived from topic models (area under the curve [AUC]=0.51; P=.38), though it was possible using behavior features, albeit with a very small effect size (AUC=0.53; P≤.001). Individual symptoms were also generally not predictable either.more »