skip to main content


Title: Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential
Abstract

Current thermochemical methods to generate H2include gasification and steam reforming of coal and natural gas, in which anthropogenic CO2emission is inevitable. If biomass is used as a source of H2, the process can be considered carbon-neutral. Seaweeds are among the less studied types of biomass with great potential because they do not require freshwater. Unfortunately, reaction pathways to thermochemically convert salty and wet biomass into H2are limited. In this study, a catalytic alkaline thermal treatment of brown seaweed is investigated to produce high purity H2with substantially suppressed CO2formation making the overall biomass conversion not only carbon-neutral but also potentially carbon-negative. High-purity 69.69 mmol-H2/(dry-ash-free)g-brown seaweed is produced with a conversion as high as 71%. The hydroxide is involved in both H2production and in situ CO2capture, while the Ni/ZrO2catalyst enhanced the secondary H2formation via steam methane reforming and water-gas shift reactions.

 
more » « less
NSF-PAR ID:
10176829
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrogen gas (H2) is the primary storable fuel for pollution‐free energy production, with over 90 million tonnes used globally per year. More than 95% of H2is synthesized through metal‐catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2) per tonne H2. “Green H2” from water electrolysis using renewable energy evolves no CO2, but costs 2–3× more, making it presently economically unviable. Here catalyst‐free conversion of waste plastic into clean H2along with high purity graphene is reported. The scalable procedure evolves no CO2when deconstructing polyolefins and produces H2in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2production at a negative cost. Life‐cycle assessment demonstrates a 39–84% reduction in emissions compared to other H2production methods, suggesting the flash H2process to be an economically viable, clean H2production route.

     
    more » « less
  2. Abstract

    This article addresses the sustainable design of hydrogen (H2) production systems that integrate brown and blue pathways with green hydrogen infrastructure. We develop a systematic framework to simultaneously optimize the process superstructure and operating conditions of steam methane reforming (SMR)‐based hydrogen production systems. A comprehensive superstructure that integrates SMR with multiple carbon dioxide capture technologies, electrolyzers, fuel cells, and working fluids in the organic rankine cycle is proposed under varying operating conditions. A life cycle optimization model is then developed by integrating superstructure optimization, life cycle assessment approach, techno‐economic assessment, and process optimization using extensive process simulation models and formulated as a mixed‐integer nonlinear program. We find that the optimal unit‐levelized cost of hydrogen ranges from $1.49 to $3.18 per kg H2. Moreover, the most environmentally friendly process attains net‐zero life cycle greenhouse gas emissions compared to 10.55 kg CO2‐eq per kg H2for the most economically competitive process design.

     
    more » « less
  3. Abstract

    Sorption-enhanced steam reforming (SESR) of toluene (SESRT) using catalytic CO2sorbents is a promising route to convert the aromatic tar byproducts formed in lignocellulosic biomass gasification into hydrogen (H2) or H2-rich syngas. Commonly used sorbents such as CaO are effective in capturing CO2initially but are prone to lose their sorption capacity over repeated cycles due to sintering at high temperatures. Herein, we present a demonstration of SESRT using A- and B-site doped Sr1−xA’xFe1−yB’yO3−δ(A’ = Ba, Ca; B’ = Co) perovskites in a chemical looping scheme. We found that surface impregnation of 5–10 mol% Ni on the perovskite was effective in improving toluene conversion. However, upon cycling, the impregnated Ni tends to migrate into the bulk and lose activity. This prompted the adoption of a dual bed configuration using a pre-bed of NiO/γ–Al2O3catalyst upstream of the sorbent. A comparison is made between isothermal operation and a more traditional temperature-swing mode, where for the latter, an average sorption capacity of ∼38% was witnessed over five SESR cycles with H2-rich product syngas evidenced by a ratio of H2: COx> 4.0. XRD analysis of fresh and cycled samples of Sr0.25Ba0.75Fe0.375Co0.625O3-δreveal that this material is an effective phase transition sorbent—capable of cyclically capturing and releasing CO2without irreversible phase changes occurring.

     
    more » « less
  4. Abstract

    Current biomass deoxygenation technologies require large quantities H2. Gaseous hydrogen is not a naturally‐occurring raw material and is largely produced industrially via natural gas/methane steam reforming. Due to its high thermodynamic stability, direct use of methane as a hydrogen‐donor for deoxygenation of complex oxygenates has not yet been demonstrated. Using catalytic pyrolysis studies performed at 700 °C with isotope labeled methane and glucose over Ni, Pt, Mo, and Ga impregnated HZSM‐5 (Si/Al ratio 30), here we show that methane, in fact, could be used as a direct hydrogen donor for deoxygenation reactions. The amount of aromatic hydrocarbons produced increased primarily in the presence of Mo (125 % increase), and to a lesser degree, Pt (50 % increase), and Ni (22 % increase) impregnated HZSM‐5 catalysts in a methane environment. Based on the metal present, results indicate the occurrence of distinct and concurrent reactions to various degrees: methane (steam) reforming and oxygenate dehydration reaction; independent aromatization of methane and oxygenates; and an intriguing methane oxygenate cross‐coupling reaction where both hydrogen and carbon from methane ending up in resultant deoxygenated aromatic products. This technique paves way for the direct use of methane/natural gas for deoxygenation reactions critical to biorefining.

     
    more » « less
  5. High-redshift dusty star-forming galaxies with very high star formation rates (500−3000 M ⊙ yr −1 ) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these systems can reveal the driving factor behind the high star formation. Using molecular gas tracers such as, high- J CO lines, neutral carbon lines, and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar media. In this paper, we present high resolution (∼0.4″) observations of CO(7−6), [CI](2−1), and dust continuum of three lensed galaxies from the South pole telescope – sub-millimetre galaxies (SPT-SMG) sample at z  ∼ 3 with the Atacama Large Millimetre/submillimetre Array. Our sources have high intrinsic star formation rates (> 850 M ⊙ yr −1 ) and rather short depletion timescales (< 100 Myr). Based on the L [CI](2−1) / L CO(7 − 6) and L [CI](2−1) / L IR ratios, our galaxy sample has similar radiation field intensities and gas densities compared to other submillimetre galaxies. We performed visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H 2 conversion factor α CO , but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103−45 and SPT2147−50 are likely rotating disks, while SPT2357−51 is possibly a major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high- z dusty star-forming galaxies. 
    more » « less