The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but havemore »
Results of an Intro to Mechanics Course Designed to Support Student Success in Physics I and Foundational Engineering Courses
This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment of more »
- Award ID(s):
- 1727054
- Publication Date:
- NSF-PAR ID:
- 10176869
- Journal Name:
- ASEE Annual Conference Proceedings
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holisticmore »
-
Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who weremore »
-
A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor in to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regressionmore »
-
A growing body of research indicates spatial visualization skills are important to success in many STEM disciplines, including several engineering majors that rely on a foundation in engineering mechanics. Many fundamental mechanics concepts such as free-body diagrams, moments, and vectors are inherently spatial in that application of the concept and related analytical techniques requires visualization and sketching. Visualization may also be important to mechanics learners’ ability to understand and employ common mechanics representations and conventions in communication and problem solving, a skill known as representational competence. In this paper, we present early research on how spatial abilities might factor in to students’ conceptual understanding of vectors and associated representational competence. We administered the Mental Cutting Test (MCT), a common assessment of spatial abilities, in the first and last week of the term. We also administered the Test of Representational Competence with Vectors (TRCV), a targeted assessment of vector concepts and representations, in week one and at mid-term. The vector post-test came after coverage of moments and cross products. We collected this assessment data in statics courses across multiple terms at three different colleges. To understand how spatial skills relate to the development of representational competence, we use a multiple regressionmore »