skip to main content


Title: Results of an Intro to Mechanics Course Designed to Support Student Success in Physics I and Foundational Engineering Courses
This complete evidence-based practice paper discusses the strategies and results of an introduction to mechanics course, designed to prepare students for introductory-level physics and other fundamental courses in engineering, such as statics, strength of materials, and dynamics. The course was developed to address historically high failure (DFW) rates in the physics courses and is part of a set of interventions implemented to support student success in a college of engineering and computer science. The course focuses on providing in-depth understanding of Newton’s Laws of motion, free-body diagrams, and linear and projectile motion. Because it focuses on a limited number of competencies, it is possible to spend more time on inquiry-based activities and in-class discussions. The course framework was designed considering the Ebbinghaus’ Forgetting Curve, to provide students with learning opportunities in 6-day cycles: (i) day 1: a pre-class learning activity (reading or video) and a quiz; (ii) day 2: in-class Kahoot low-stakes quiz with discussion, a short lecture with embedded time for problem-solving and discussion, and in-class activities (labs, group projects); (iii) day 4: homework due two days after the class; (iv) day 6: homework self-reflection (autopsy based on provided solutions) two days after homework is due. The assessment of course performance is based on the well-characterized force concept inventory (FCI) exam that is administered before the intro to mechanics course and both before and after the Physics I course; and on student performance (grades) in Physics and Statics courses. Results from the FCI pre-test show that students who took the introduction to mechanics course (treatment group) started the physics course with a much better understanding of force concepts than other students in the course. The FCI post-test shows better normalized gain for the treatment group, compared to other students, which is also aligned with student performance in the course. Additionally, student performance is significantly better in statics, with 25% DWF rate compared to 50% for the other students. In summary, the framework of the course, which focuses on providing students with in-depth understanding of force concepts, has led to better learning and performance in Physics I, but importantly it has also helped students achieve better performance in the Statics course, the first fundamental course in civil and mechanical engineering programs.  more » « less
Award ID(s):
1727054
NSF-PAR ID:
10176869
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASEE Annual Conference Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Work-in-Progress paper, we report on the challenges and successes of a large-scale First- Year Engineering and Computer Science Program at an urban comprehensive university, using quantitative and qualitative assessment results. Large-scale intervention programs are especially relevant to comprehensive minority serving institutions (MSIs) that serve a high percentage of first-generation college students who often face academic and socioeconomic barriers. Our program was piloted in 2015 with 30 engineering students, currently enrolls 60 engineering and computer science students, and is expected to grow to over 200 students by Fall 2020. The firstyear program interventions include: (i) block schedules for each cohort in the first year; (ii) redesigned project-based introduction to engineering and introduction to computer science courses; (iii) an introduction to mechanics course, which provides students with the foundation needed to succeed in the traditional physics sequence; and (iv) peer-led supplemental instruction (SI) workshops for Calculus, Physics and Chemistry. A faculty mentorship program was implemented to provide additional support to students, but was phased out after the first year. Challenges encountered in the process of expanding the program include administrative, such as scheduling and training faculty and SI leaders; barriers to improvement of math and science instruction; and more holistic concerns such as creating a sense of community and identity for the program. Quantitative data on academic performance includes metrics such as STEM GPA and persistence, along with the Force Concept Inventory (FCI) for physics. Qualitative assessments of the program have used student and instructor surveys, focus groups, and individual interviews to measure relationships among factors associated with college student support and to extract student perspectives on what works best for them. Four years of data tell a mixed story, in which the qualitative effect of the interventions on student confidence and identity is strong, while academic performance is not yet significantly different than that of comparison groups. One of the most significant results of the program is the development of a FYrE Professional Learning Community which includes faculty (both tenure-track and adjunct), department chairs, staff, and administrators from across the campus. 
    more » « less
  2. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments. 
    more » « less
  3. The College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angles, an Hispanic Serving Institution (HSI) with over 60% Hispanic students, is committed to improving graduation rates through the Grad initiative 2025 (the California State University’s initiative to increase graduation rates for all CSU students while eliminating achievement gaps). The majority of our students are under-represented minorities, low-income, Pell-eligible and first generation. Currently, one quarter of the students leaving the major before the second year. Many that “survive” the first two years of math and science do not develop the knowledge and the skills that are needed to succeed in upper division engineering courses, leading to more students unable to finish their engineering majors. Three years ago, we launched a pilot program for the First-Year Experience at ECST (FYrE@ECST) for incoming freshmen. The program focuses on providing academic support for math and physics courses while introducing students to the college community, and comprises a summer bridge program, a hands-on introductory course, cohorted math and science sections, and staff and faculty mentoring. Academic support is provided through peer-led supplemental instruction (SI) workshops. The workshops have led to a significant improvement in student performance in Math, but have had no significant impact in the student performance in physics. Our hypothesis is that students, in addition to having limited understanding of calculus, struggle to understand the fundamental principles of physics and thus cannot apply their knowledge of math to theories in physics to solve problems. This work-in-progress paper describes an inquiry-based hands-on pre-physics course for first-year students as part of the FYrE@ECST program. The course is intended to prepare students for the calculus-based mechanics course in physics and covers about half of the competencies of a classical mechanics course, with focuses on the fundamental concepts of mechanics (i.e. Newton’s Laws, Types of forces, vectors, free-body diagrams, position, velocity and acceleration). Equations are only introduced in the second half of the semester, while the first half is directed to help students develop a deep understanding of these fundamental concepts. During classes, students run simple experiments, watch segments of movies and cartoons and are asked questions (written and orally) which can guide them to think intuitively and critically. A think-pair-share mode of instruction is implemented to promote inquiry and discussion. Students work in groups of five to discuss and solve problems, carry out experiments to better understand processes and systems, and share what they learned with the whole class. The paper presents preliminary results on student achievement. 
    more » « less
  4. null (Ed.)
    In engineering, students’ completion of prerequisites indicates an understanding of fundamental knowledge. Recent studies have shown a significant relationship between student performance and prior knowledge. Weak knowledge retention from prerequisite coursework can present challenges in progressive learning. This study investigates the relationship between prior knowledge and students’ performance over a few courses of Statics. Statistics has been considered as the subject of interest since it is the introductory engineering course upon which many subsequent engineering courses rely, including many engineering analysis and design courses. The prior knowledge was determined based on the quantitative and qualitative preparedness. A quiz set was designed to assess quantitative preparedness. The qualitative preparedness was assessed using a survey asking students’ subjective opinions about their preparedness at the beginning of the semester. Student performance was later quantified through final course grades. Each set of data were assigned three categories for grouping purposes to reflect preparedness: 1) high preparedness: 85% or higher score, 2) medium preparedness: between 60% and 85%, and 3) weak preparedness: 60% or lower. Pearson correlation coefficient and T-test was conducted on 129 students for linear regression and differences in means. The analysis revealed a non-significant correlation between the qualitative preparedness and final scores (p-value = 0.29). The data revealed that students underestimated their understanding of the prerequisites for the class, since the quantitative preparedness scores were relatively higher than the qualitative preparedness scores. This can be partially understood by the time gap between when prerequisites were taken and when the course under investigation was taken. Students may have felt less confident at first but were able to pick up the required knowledge quickly. A moderately significant correlation between students’ quantitative preparedness and course performance was observed (p -value < 0.05). Students with high preparedness showed > 80% final scores, with a few exceptions; students with weak preparedness also showed relatively high final scores. However, most of the less prepared students made significant efforts to overcome their weaknesses through continuous communication and follow-up with the instructor. Despite these efforts, these students could not obtain higher than 90% as final scores, which indicates that level of preparedness reflects academic excellence. Overall, this study highlights the role of prior knowledge in achieving academic excellence for engineering. The study is useful to Civil Engineering instructors to understand the role of students’ previous knowledge in their understanding of difficult engineering concepts. 
    more » « less
  5. No skill is more important for a student of mechanics than the ability to draw a complete and accurate free-body diagram (FBD). A good FBD facilitates proper accounting of forces when writing the balances that lead to governing equations in statics, solid mechanics, and dynamics. Because this skill is essential, educational approaches that improve the ability of students to draw correct FBDs are critical for maximizing the potential of the next generation of engineers. Traditionally, learning to draw FBDs involves classroom instruction followed by homework practice consisting of problems drawn from a textbook. Homework as practice does not serve all students well, because it does not scaffold the process of drawing FBDs in terms of distinct tasks (e.g., isolating the body, considering support reactions) nor does it offer immediate feedback, which students often need to avoid falling into the same error repeatedly. To address these shortcomings, we embarked on the design, implementation, and testing of a mobile application (app) that offers an alternative venue for FBD practice. The app provides students with asynchronous opportunities for training, varied tasks that target specific FBD issues, and several levels of immediate feedback. We hypothesize that the gamified environment and puzzle-based gameplay will improve student skill and self-efficacy in drawing FBDs, particularly for women, who may feel less confident in their spatial skills. Data collected to describe student experiences may also provide additional insight into how to improve FBD instruction generally. In this paper, we detail the process for designing and implementing the app and provide initial data regarding student impressions and use. The app was piloted in Fall 2022 in a large Introduction to Statics course as a non-graded study activity; all students except one (n=97) participated in an evaluation of its design features and user experiences. Approximately half (54%) of students indicated they had played half or more of the available games. When commenting about how the FBD app did, or did not, help their learning, 49% of respondents appreciated that the app allowed additional opportunities for practice. Students used these opportunities to further develop several skills, such as visualizing the system and setting up accurate diagrams, which strengthened their confidence and reviewed key concepts. While describing the value of practicing through the app, 21% of students called out how the app provided feedback. They specifically mentioned the positive experiences of receiving feedback that is immediate, that explains boundary connections, and that deepens learning after mistakes are made. These and other findings from the pilot study are discussed with corresponding next steps for development. 
    more » « less