In this manuscript, we discuss relevant socioeconomic factors for developing and implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished communities. The distinct economic, environmental, cultural, and ethical paradigms that affect economically disadvantaged users add complexity to the process of technology development and deployment beyond the science and engineering issues. We begin by contextualizing the environmental burden of disease in select low-income regions around the world, including environmental hazards at work, home, and the broader community environment, where SNAPS may be helpful in the prevention and mitigation of human exposure to harmful biological vectors and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users, specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic challenges that are involved in the phased implementation of diagnostic tools in low-income markets and describe a micropayment-based systems-as-a-service approach (pay-a-penny-per-use—PAPPU), which may be catalytic for the adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide some insights into the social and ethical considerations for the assimilation of SNAPS to improve health outcomes in marginalized communities.
more »
« less
SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems
In this review, we discuss the role of sensor analytics point solutions (SNAPS), a reduced complexity machine-assisted decision support tool. We summarize the approaches used for mobile phone-based chemical/biological sensors, including general hardware and software requirements for signal transduction and acquisition. We introduce SNAPS, part of a platform approach to converge sensor data and analytics. The platform is designed to consist of a portfolio of modular tools which may lend itself to dynamic composability by enabling context-specific selection of relevant units, resulting in case-based working modules. SNAPS is an element of this platform where data analytics, statistical characterization and algorithms may be delivered to the data either via embedded systems in devices, or sourced, in near real-time, from mist, fog or cloud computing resources. Convergence of the physical systems with the cyber components paves the path for SNAPS to progress to higher levels of artificial reasoning tools (ART) and emerge as data-informed decision support, as a service for general societal needs. Proof of concept examples of SNAPS are demonstrated both for quantitative data and qualitative data, each operated using a mobile device (smartphone or tablet) for data acquisition and analytics. We discuss the challenges and opportunities for SNAPS, centered around the value to users/stakeholders and the key performance indicators users may find helpful, for these types of machine-assisted tools.
more »
« less
- PAR ID:
- 10177453
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 19
- Issue:
- 22
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 4935
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Remote sensing of plant traits and their environment facilitates non‐invasive, high‐throughput monitoring of the plant's physiological characteristics. However, voluminous observational data generated by such autonomous sensor networks overwhelms scientific users when they have to analyze the data. In order to provide a scalable and effective analysis environment, there is a need for storage and analytics that support high‐throughput data ingestion while preserving spatiotemporal and sensor‐specific characteristics. Also, the framework should enable modelers and scientists to run their analytics while coping with the fast and continuously evolving nature of the dataset. In this paper, we present Radix+ , a high‐throughput distributed data storage system for supporting scalable georeferencing, and interactive query‐based spatiotemporal analytics with trackable data integrity. We include empirical evaluations performed on a commodity machine cluster with up to 1 TB of data. Our benchmarks demonstrate subsecond latency for majority of our evaluated queries and improvement in data ingestion rate over systems such as Geomesa.more » « less
-
A very large amount of data is produced by mobile and Internet-of-Thing (IoT) devices today. Increasing computational abilities and more sophisticated operating systems (OS) on these devices have allowed us to create applications that are able to leverage this data to deliver better services. But today’s mobile and IoT solutions are heavily limited by low battery capacity and limited cooling capabilities. This motivates a search for new ways to optimize for energy-efficiency. Advanced data analytics and machine-learning techniques are becoming increasingly popular to analyze and extract meaning from Big Data. In this paper, we make the case for designing and deploying data analytics and learning mechanisms to improve energy-efficiency in IoT and mobile devices with minimal overheads. We focus on middleware for inserting energy-efficient data analytics-driven solutions and optimizations in a robust manner, without altering the OS or application code. We discuss several case studies of powerful and promising developments in deploying data analytics middleware for energy-efficient and robust execution of a variety of applications on commodity mobile devices.more » « less
-
Abstract The concept of “resilience analytics” has recently been proposed as a means to leverage the promise of big data to improve the resilience of interdependent critical infrastructure systems and the communities supported by them. Given recent advances in machine learning and other data‐driven analytic techniques, as well as the prevalence of high‐profile natural and man‐made disasters, the temptation to pursue resilience analytics without question is almost overwhelming. Indeed, we find big data analytics capable to support resilience to rare, situational surprises captured in analytic models. Nonetheless, this article examines the efficacy of resilience analytics by answering a single motivating question: Can big data analytics help cyber–physical–social (CPS) systems adapt to surprise? This article explains the limitations of resilience analytics when critical infrastructure systems are challenged by fundamental surprises never conceived during model development. In these cases, adoption of resilience analytics may prove either useless for decision support or harmful by increasing dangers during unprecedented events. We demonstrate that these dangers are not limited to a single CPS context by highlighting the limits of analytic models during hurricanes, dam failures, blackouts, and stock market crashes. We conclude that resilience analytics alone are not able to adapt to the very events that motivate their use and may, ironically, make CPS systems more vulnerable. We present avenues for future research to address this deficiency, with emphasis on improvisation to adapt CPS systems to fundamental surprise.more » « less
-
Classification of construction resource states, using sensor data analytics, has implications for improving informed decision-making for safety and productivity. However, training on sensor data analytics in construction education faces challenges owing to the complexity of analytical processes and the large stream of raw data involved. This research presents the development and user evaluation of ActionSens, a block-based end-user programming platform, for training students from construction-related disciplines to classify resources using sensor data analytics. ActionSens was designed for construction students to perform sensor data analytics such as activity recognition in construction. ActionSens was compared to traditional tools (i.e., combining Excel and MATLAB) used for performing sensor data analytics in terms of usability, workload, visual attention, and processing time using the System Usability Scale, NASA Task Load Index, eye-tracking, and qualitative feedback. Twenty students participated, performing data analytics tasks with both approaches. ActionSens exhibited a better user experience compared to conventional platforms, through higher usability scores and lower cognitive workload. This was evident through participants' interaction behavior, showcasing optimized attentional resource allocation across key tasks. The study contributes to knowledge by illustrating how the integration of construction domain information into block-based programming environments can equip students with the necessary skills for sensor data analytics. The development of ActionSens contributes to the Learning-for-Use framework by employing graphical and interactive programming objects to foster procedural knowledge for addressing challenges in sensor data analytics. The formative evaluation provides insights into how students engage with the programming environment and assesses the impact of the environment on their cognitive load.more » « less
An official website of the United States government

