skip to main content


Title: Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts
Multi-elemental alloy nanoparticles (MEA-NPs) hold great promise for catalyst discovery in a virtually unlimited compositional space. However, rational and controllable synthesize of these intrinsically complex structures remains a challenge. Here, we report the computationally aided, entropy-driven design and synthesis of highly efficient and durable catalyst MEA-NPs. The computational strategy includes prescreening of millions of compositions, prediction of alloy formation by density functional theory calculations, and examination of structural stability by a hybrid Monte Carlo and molecular dynamics method. Selected compositions can be efficiently and rapidly synthesized at high temperature (e.g., 1500 K, 0.5 s) with excellent thermal stability. We applied these MEA-NPs for catalytic NH 3 decomposition and observed outstanding performance due to the synergistic effect of multi-elemental mixing, their small size, and the alloy phase. We anticipate that the computationally aided rational design and rapid synthesis of MEA-NPs are broadly applicable for various catalytic reactions and will accelerate material discovery.  more » « less
Award ID(s):
1809439
NSF-PAR ID:
10177845
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;  ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
11
ISSN:
2375-2548
Page Range / eLocation ID:
eaaz0510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multi‐elemental alloy (MEA) nanoparticles have recently received notable attention owing to their high activity and superior phase stability. Previous syntheses of MEA nanoparticles mainly used carbon as the support, owing to its high surface area, good electrical conductivity, and tunable defective sites. However, the interfacial stability issue, such as nanoparticle agglomeration, remains outstanding due to poor interfacial binding between MEA and carbon. Such a problem often causes performance decay when MEA nanoparticles are used as catalysts, hindering their practical applications. Herein, an interface engineering strategy is developed to synthesize MEA–oxide–carbon hierarchical catalysts, where the oxide on carbon helps disperse and stabilize the MEA nanoparticles toward superior thermal and electrochemical stability. Using several MEA compositions (PdRuRh, PtPdIrRuRh, and PdRuRhFeCoNi) and oxides (TiO2and Cr2O3) as model systems, it is shown that adding the oxide renders superior interfacial stability and therefore excellent catalytic performance. Excellent thermal stability is demonstrated under transmission electron microscopy with in situ heating up to 1023 K, as well as via long‐term cycling (>370 hours) of a Li–O2battery as a harsh electrochemical condition to challenge the catalyst stability. This work offers a new route toward constructing efficient and stable catalysts for various applications.

     
    more » « less
  2. Abstract

    The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.

     
    more » « less
  3. Understanding the catalytic oxidation of propane is important for developing catalysts not only for catalytic oxidation of hydrocarbons in emission systems but also for selective oxidation in the chemical processing industry. For palladium-based catalysts, little is known about the identification of the chemical or intermediate species involved in propane oxidation. We describe herein findings of an investigation of the catalytic oxidation of propane over supported palladium nanoalloys with different compositions of gold (Pd n Au 100−n ), focusing on probing the chemical or intermediate species on the catalysts in correlation with the bimetallic composition and the alloying phase structure. In addition to an enhanced catalytic activity, a strong dependence of the catalytic activity on the bimetallic composition was revealed, displaying an activity maximum at a Pd : Au ratio of 50 : 50 in terms of reaction temperature. This dependence is also reflected by its dependence on the thermochemical treatment conditions. While the activity for nanoalloys with n ∼ 50 showed little change after the thermochemical treatment under oxygen, the activities for nanoalloys with n < 50 and n > 50 showed opposite trends. Importantly, this catalytic synergy is linked to the subtle differences of chemical and intermediate species which have been identified for the catalysts with different bimetallic compositions by in situ measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). For the catalytic oxidation of propane over the highly-active catalyst with a Pd : Au ratio of 50 : 50, the major species identified include acetate and bicarbonate, showing subtle differences in comparison with the identification of bicarbonate and formate for the catalyst with <50% Au (with a lower activity) and the absence of apparent species for the catalyst with >50% Au (activity is largely absent). The alloying of 50% Au in Pd is believed to increase the oxophilicity of Pd, which facilitates the first carbon–carbon bond cleavage and oxygenation of propane. The implications of the findings on the catalytic synergy of Pd alloyed with Au and the design of active Pd alloy catalysts are also discussed. 
    more » « less
  4. Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternary mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity. 
    more » « less
  5. Abstract

    The availability of durable, high‐performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion‐exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave‐assisted synthesis method is used to develop a core–shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2provides a strong metal‐support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as‐synthesized PtRu/TiO2/C‐400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80–0.90 V) and voltage efficiency (68%@ 0.5 A cm−2) values in the compared literature. In addition, the cell demonstrates promising short‐term voltage stability with a minor voltage decay of 1.5 mV h−1. This “first‐of‐its‐kind in alkaline” work may open further research avenues to develop rapid synthesis methods to prepare advanced core–shell metal‐oxide/carbon supports for electrocatalysts for use in the next‐generation of AEMFCs with potential applicability to the broader electrochemical systems research community.

     
    more » « less