Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. InArabidopsis, endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.
more »
« less
The Synthesis and Biological Evaluation of Indolactam Alkaloids
In this work, we execute a general synthetic strategy to access novel indolactam alkaloids, which are agonists of protein kinase C. This protocol allowed for the most efficient reported syntheses of indolactam V (ILV) stereoisomers, while also affording the large-scale production of natural product (–)-ILV. Structure–activity studies were conducted with these compounds to elucidate the elements necessary to promote PKC-mediated cellular response. EC50 measurements in leukemia and lymphoma cell lines, as well as molecular docking analyses with the PKCδ C1B domain, provided the foundation for these studies. A distinct correlation between in vitro activity and the conformation of the macrocyclic lactam ring was discovered, which can guide design efforts for therapeutics that target the PKC regulatory domain.
more »
« less
- Award ID(s):
- 1726903
- PAR ID:
- 10178070
- Date Published:
- Journal Name:
- Synthesis
- Volume:
- 51
- Issue:
- 23
- ISSN:
- 0039-7881
- Page Range / eLocation ID:
- 4443 to 4451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reactivity of Thiol-Rich Zn Sites in Diacylglycerol-Sensing PKC C1 Domain Probed by NMR Spectroscopynull (Ed.)Conserved homology 1 (C1) domains are peripheral zinc finger domains that are responsible for recruiting their host signaling proteins, including Protein Kinase C (PKC) isoenzymes, to diacylglycerol-containing lipid membranes. In this work, we investigated the reactivity of the C1 structural zinc sites, using the cysteine-rich C1B regulatory region of the PKCα isoform as a paradigm. The choice of Cd 2+ as a probe was prompted by previous findings that xenobiotic metal ions modulate PKC activity. Using solution NMR and UV-vis spectroscopy, we found that Cd 2+ spontaneously replaced Zn 2+ in both structural sites of the C1B domain, with the formation of all-Cd and mixed Zn/Cd protein species. The Cd 2+ substitution for Zn 2+ preserved the C1B fold and function, as probed by its ability to interact with a potent tumor-promoting agent. Both Cys 3 His metal-ion sites of C1B have higher affinity to Cd 2+ than Zn 2+ , but are thermodynamically and kinetically inequivalent with respect to the metal ion replacement, despite the identical coordination spheres. We find that even in the presence of the oxygen-rich sites presented by the neighboring peripheral membrane-binding C2 domain, the thiol-rich sites can successfully compete for the available Cd 2+ . Our results indicate that Cd 2+ can target the entire membrane-binding regulatory region of PKCs, and that the competition between the thiol- and oxygen-rich sites will likely determine the activation pattern of PKCs.more » « less
-
Zhu, Shanfeng (Ed.)Understanding microbial interactions is fundamental for exploring population dynamics, particularly in microbial communities where interactions affect stability and host health. Generalized Lotka-Volterra (gLV) models have been widely used to investigate system dynamics but depend on absolute abundance data, which are often unavailable in microbiome studies. To address this limitation, we introduce an iterative Lotka-Volterra (iLV) model, a novel framework tailored for compositional data that leverages relative abundances and iterative refinements for parameter estimation. The iLV model features two key innovations: an adaptation of the gLV framework to compositional constraints and an iterative optimization strategy combining linear approximations with nonlinear refinements to enhance parameter estimation accuracy. Using simulations and real-world datasets, we demonstrate that iLV surpasses existing methodologies, such as the compositional LV (cLV) and the generalized LV (gLV) model, in recovering interaction coefficients and predicting species trajectories under varying noise levels and temporal resolutions. Applications to the lynx-hare predator-prey,Stylonychia pustula-P. caudatummixed culture, and cheese microbial systems revealed consistency between predicted and observed relative abundances showcasing its accuracy and robustness. In summary, the iLV model bridges theoretical gLV models and practical compositional data analysis, offering a robust framework to infer microbial interactions and predict community dynamics using relative abundance data, with significant potential for advancing microbial research.more » « less
-
Background: Croton oligandrus Pierre & Hutch is a tropical tree that grows in West and Central Africa, used in ethnomedicine to treat cancer, diabetes, headaches, convulsions, urinary diseases, and inflammatory diseases. As other Croton species have been observed to possess chemical compounds that target HIV latency-reversal, we hypothesized that this species may have similar properties. Aim of the study: The identification of extracts and compounds of this species, which have HIV-1 latency-reversing activity in J-Lat T cell lines. Methods: The stem bark was obtained, air-dried, powdered, and extracted using dichloromethane. In vitro flow cytometry was used to monitor GFP expression, a marker of HIV latency reversal, following treatment of J-Lat T cells with extracts and compounds. Results: Four extracts were found to reverse HIV latency, the most active extract showing better activity (ie, latency reversal in 69.7 ± 7.1% [mean ± s.e.m.] of J-Lat 10.6 cells at 1 µg/mL) than control agents prostratin (46.2 ± 9.5% at 1.2 µg.mL) and the "Mukungulu" (Croton megalobotrys) extract (34.9 ± 24.2% at 1 µg/mL). Extracts reversed HIV latency through mechanisms over and above protein kinase C (PKC) activation and distinct from histone deacetylase (HDAC) inhibition. The most active extract also synergized with the control HDAC inhibitor romidepsin but did not synergize with other extracts. Isolated compounds (β-Stigmasterol and lupeol) had limited but consistent latency reversal on their own. Conclusion: The plant extracts and compounds reverse HIV latency through mechanisms additional to PKC activation and/or synergize with romidepsin in vitro. Extracts and compounds from this plant may enhance the activity of current HIV latency-reversing agents being assessed in HIV cure studies.more » « less
-
DNA polymerase β (pol β ) is a member of the X- family of DNA polymerases that catalyze the distributive addition of nucleoside triphosphates during base excision DNA repair. Previous studies showed that the enzyme was phosphorylated in vitro with PKC at two serines (44 and 55), causing loss of DNA polymerase activity but not DNA binding. In this work, we have investigated the phosphorylation-induced conformational changes in DNA polymerase β in the presence of Mg ions. We report a comprehensive atomic resolution study of wild type and phosphorylated DNA polymerase using molecular dynamics (MD) simulations. The results are examined via novel methods of internal dynamics and energetics analysis to reveal the underlying mechanism of conformational transitions observed in DNA pol β . The results show drastic conformational changes in the structure of DNA polymerase β due to S44 phosphorylation. Phosphorylation-induced conformational changes transform the enzyme from a closed to an open structure. The dynamic cross-correlation shows that phosphorylation enhances the correlated motions between the different domains. Centrality network analysis reveals that the S44 phosphorylation causes structural rearrangements and modulates the information pathway between the Lyase domain and base pair binding domain. Further analysis of our simulations reveals that a critical hydrogen bond (between S44 and E335) disruption and the formation of three additional salt bridges are potential drivers of these conformational changes. In addition, we found that two of these additional salt bridges form in the presence of Mg ions on the active sites of the enzyme. These results agree with our previous study of DNA pol β S44 phosphorylation without Mg ions which predicted the deactivation of DNA pol β . However, the phase space of structural transitions induced by S44 phosphorylation is much richer in the presence of Mg ions.more » « less
An official website of the United States government

