skip to main content


Title: Effect of Pepper-Containing Diets on the Diversity and Composition of Gut Microbiome of Drosophila melanogaster
One of the greatest impacts on the gastrointestinal microbiome is diet because the host and microbiome share the same food source. In addition, the effect of diet can diverge depending on the host genotype. Diets supplemented with phytochemicals found in peppers might cause shifts in the microbiome. Thus, understanding how these interactions occur can reveal potential health implications associated with such changes. This study aims to explore the gut microbiome of different Drosophila genetic backgrounds and the effects of dietary pepper treatments on its composition and structure. We analyzed the gut microbiomes of three Drosophila melanogaster genetic backgrounds (Canton-S, Oregon-RC, and Berlin-K) reared on control and pepper-containing diets (bell, serrano, and habanero peppers). Results of 16S rRNA gene sequencing revealed that the variability of Drosophila gut microbiome can be driven mainly by genetic factors. When the abundance of these communities is considered, pepper-containing diets also appear to have an effect. The most relevant change in microbial composition was the increment of Lactobacillaceae and Acetobacteraceae abundance in the pepper-containing diets in comparison with the controls in Oregon-RC and Berlin-K. Regression analysis demonstrated that this enhancement was associated with the content of phenolic compounds and carotenoids of the peppers utilized in this study; specifically, to the concentration of β-carotene, β-cryptoxanthin, myricetin, quercetin, and apigenin.  more » « less
Award ID(s):
1920920
NSF-PAR ID:
10178128
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
21
Issue:
3
ISSN:
1422-0067
Page Range / eLocation ID:
945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Because microbes use carotenoids as an antioxidant for protection, dietary carotenoids could be associated with gut microbiota composition. We aimed to determine associations among reported carotenoid intake, plasma carotenoid concentrations, and fecal bacterial communities in pregnant women. Pregnant women (n= 27) were enrolled in a two‐arm study designed to assess feasibility of biospecimen collection and delivery of a practical nutrition intervention. Plasma and fecal samples were collected and women were surveyed with a 24‐hr dietary checklist and recalls. Plasma carotenoids were analyzed by HPLC using photodiode array detection. Fecal bacteria were analyzed by 16S rRNA DNA sequencing. Results presented are cross‐sectional from the 36‐week gestational study visit combined across both study arms due to lack of significant differences between intervention and usual care groups (n= 23 women with complete data). Recent intake of carotenoid‐containing foods included carrots, sweet potatoes, mangos, apricots, and/or bell peppers for 48% of women; oranges/orange juice (17%); egg (39%); tomato/tomato‐based sauces (52%); fruits (83%); and vegetables (65%). Average plasma carotenoid concentrations were 6.4 µg/dL α‐carotene (AC), 17.7 µg/dL β‐carotene (BC), 11.4 µg/dL cryptoxanthin, 39.0 µg/dL trans‐lycopene, and 29.8 µg/dL zeaxanthin and lutein. AC and BC concentrations were higher in women who recently consumed foods high in carotenoids. CR concentrations were higher in women who consumed oranges/orange juice. Microbiota α‐diversity positively correlated with AC and BC. Microbiota β‐diversity differed significantly across reported intake of carotenoid containing foods and plasma concentrations of AC. This may reflect an effect of high fiber or improved overall dietary quality, rather than a specific effect of carotenoids.

    Practical Application

    Little is known about the association between the gut microbiome and specific dietary microconstituents, such as carotenoids, especially during pregnancy. This research demonstrates that a carotenoid‐rich diet during pregnancy supports a diverse microbiota, which could be one mechanism by which carotenoids promote health.

     
    more » « less
  2. ABSTRACT Background

    Herbs and spices are rich in polyphenolic compounds that may influence gut bacterial composition. The effect of culinary doses of herbs and spices consumed as part of a well-defined dietary pattern on gut bacterial composition has not been previously studied.

    Objectives

    The aim of this prespecified exploratory analysis was to examine gut bacterial composition following an average American diet (carbohydrate: 50% kcal; protein: 17%; total fat: 33%; saturated fat: 11%) containing herbs and spices at 0.5, 3.3, and 6.6 g.d–1.2100 kcal–1 [low-, moderate-, and high-spice diets, respectively (LSD, MSD, and HSD)] in adults at risk for CVD.

    Methods

    Fifty-four adults (57% female; mean ± SD age: 45 ± 11 y; BMI: 29.8 ± 2.9 kg/m2; waist circumference: 102.8 ± 7.1 cm) were included in this 3-period, randomized, crossover, controlled-feeding study. Each diet was provided for 4 wk with a minimum 2-wk washout period. At baseline and the end of each diet period, participants provided a fecal sample for 16S rRNA gene (V4 region) sequencing. QIIME2 was used for data filtration, sequence clustering, taxonomy assignment, and statistical analysis.

    Results

    α-diversity assessed by the observed features metric ( P = 0.046) was significantly greater following the MSD as compared with the LSD; no other between-diet differences in α-diversity were detected. Differences in β-diversity were not observed between the diets ( P = 0.45). Compared with baseline, β-diversity differed following all diets ( P < .02). Enrichment of the Ruminococcaceae family was observed following the HSD as compared with the MSD (relative abundance = 22.14%, linear discriminant analysis = 4.22, P = 0.03) and the LSD (relative abundance  = 24.90%, linear discriminant analysis = 4.47, P = 0.004).

    Conclusions

    The addition of herbs and spices to an average American diet induced shifts in gut bacterial composition after 4 wk in adults at risk for CVD. The metabolic implications of these changes merit further investigation. This trial was registered at clinicaltrials.gov as NCT03064932.

     
    more » « less
  3. Abstract

    Mammals rely on the metabolic functions of their gut microbiota to meet their energetic needs and digest potentially toxic components in their diet. The gut microbiome plastically responds to shifts in host diet and may buffer variation in energy and nutrient availability. However, it is unclear how seasonal differences in the gut microbiome influence microbial metabolism and nutrients available to hosts. In this study, we examine seasonal variation in the gut metabolome of black howler monkeys (Alouatta pigra) to determine whether those variations are associated with differences in gut microbiome composition and nutrient intake, and if plasticity in the gut microbiome buffers shortfalls in energy or nutrient intake. We integrated data on the metabolome of 81 faecal samples from 16 individuals collected across three distinct seasons with gut microbiome, nutrient intake and plant metabolite consumption data from the same period. Faecal metabolite profiles differed significantly between seasons and were strongly associated with changes in plant metabolite consumption. However, microbial community composition and faecal metabolite composition were not strongly associated. Additionally, the connectivity and stability of faecal metabolome networks varied seasonally, with network connectivity being highest during the dry, fruit‐dominated season when black howler monkey diets were calorically and nutritionally constrained. Network stability was highest during the dry, leaf‐dominated season when most nutrients were being consumed at intermediate rates. Our results suggest that the gut microbiome buffers seasonal variation in dietary intake, and that the buffering effect is most limited when host diet becomes calorically or nutritionally restricted.

     
    more » « less
  4. A group of diseases have been shown to correlate with a phenomenon called microbiome dysbiosis, where the bacterial species composition of the gut becomes abnormal. The gut microbiome of an animal is influenced by many factors including diet, exposures to bacteria during post-gestational growth, lifestyle, and disease status. Studies also show that host genetics can affect microbiome composition. We sought to test whether host genetic background is associated with gut microbiome composition in the Norwegian Lundehund dog, a highly inbred breed with an effective population size of 13 individuals. The Lundehund has a high rate of a protein-losing enteropathy in the small intestine that is often reported as Lundehund syndrome, which negatively affects longevity and life-quality. An outcrossing project with the Buhund, Norrbottenspets, and Icelandic sheepdog was recently established to reintroduce genetic diversity to the Lundehund and improve its health. To assess whether there was an association between host genetic diversity and the microbiome composition, we sampled the fecal microbiomes of 75 dogs of the parental (Lundehund), F1 (Lundehund x Buhund), and F2 (F1 x Lundehund) generations. We found significant variation in microbiome composition from the parental Lundehund generation compared to the outcross progeny. The variation observed in purebred Lundehunds corresponded to dysbiosis as seen by a highly variable microbiome composition with an elevated Firmicutes to Bacteroidetes ratio and an increase in the prevalence of Streptococcus bovis/Streptococcus equinus complex, a known pathobiont that can cause several diseases. We tracked several other environmental factors including diet, the presence of a cat in the household, living in a farm and the use of probiotics, but we did not find evidence of an effect of these on microbiome composition and alpha diversity. In conclusion, we found an association between host genetics and gut microbiome composition, which in turn may be associated with the high incidence of Lundehund syndrome in the purebred parental dogs. 
    more » « less
  5. Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsidies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning doves ( Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabolomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was significantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae, Oribacterium, and Sanguibacter and decreased circulating LPS in the urban-fed birds. These differences were largely not reflected in the surveyed metabolomes and plasma inflammatory markers. This research supports the notion that the microbial composition in urban doves is impacted by diet, though may only weakly associate with host physiology. 
    more » « less