skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Deep Eutectic Solvent Extraction of High‐Purity Lignin from a Corn Stover Hydrolysate
Abstract

A lactic acid/chlorine chloride‐based deep eutectic solvent (DES) was used for the extraction of high‐purity lignin (up to 94.7 %) in high yield (up to 75 %) from the hydrolysis/fermentation residue corn stover hydrolysate (CSH), which was generated from a pilot‐plant‐scale biorefinery. A range of extraction conditions were investigated, which involved varying reaction temperature, time, and DES composition. The relationship between lignin yield, purity, and structural characteristics with DES treatment conditions was determined. The extraction of high‐purity lignin from hydrolysis/fermentation residues presents a promising approach for enhancing the economic feasibility of a lignocellulose biorefinery. It was also determined that DES extraction can produce lignin with a controlled range of molecular weight and functional group content.

 
more » « less
PAR ID:
10178223
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSusChem
Volume:
13
Issue:
17
ISSN:
1864-5631
Page Range / eLocation ID:
p. 4678-4690
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6C1monomers into the lignin structure. By expressing the bacterialubiCgene in sorghum,p‐hydroxybenzoic acid (PB)‐rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild‐type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB‐rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the β‐Ο‐4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB‐based DES and engineered PB‐rich biomass is a promising strategy to achieve a sustainable closed‐loop biorefinery.

     
    more » « less
  2. Abstract

    Utilizing lignin feedstock along with cellulosic ethanol for the production of high‐energy‐density jet fuel offers a significant opportunity to enhance the overall operation efficiency, carbon conversion efficiency, economic viability, and sustainability of biofuel and chemical production. A patented catalytic process to produce lignin‐substructure‐based hydrocarbons in the jet‐fuel range from lignin was developed. Comprehensive techno‐economic analysis of this process was conducted through process simulation in this study. The discounted cash flow rate of return (DCFROR) method was used to evaluate a 2000 dry metric ton/day lignocellulosic ethanol biorefinery with the co‐production of lignin jet fuel. The minimum selling price of lignin jet fuel at a 10% discount rate was estimated to be in the range of $6.35–$1.76/gal depending on the lignin and conversion rate and capacity. With a production capacity of 1.5–16.6 million gallon jet fuel per year, capital costs ranged from $38.0 to $39.4 million. On the whole, the co‐production of jet fuel from lignin improved the overall economic viability of an integrated biorefinery process for corn ethanol production by raising co‐product revenue from jet fuels. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd

     
    more » « less
  3. Pretreatment is an important step to reduce the recalcitrance factors in biomass for effective biomass utilization. In particular, the choice of processing solvents in the pretreatment influences the quantity and quality of the final products. Although conventional organosolv pretreatments are effective, they are typically performed under harsh conditions. Compared to those approaches, recent studies have shown that the use of Deep Eutectic Solvents (DES) made up of a hydrogen bond donor and acceptor at the eutectic point can be a promising alternative as biomass processing solvents because of their good thermal stability and compatibility with natural components. In this study, DES pretreatment was applied to corn stover, which is the largest agricultural residue in the United States. The performance of the pretreatments was assessed by measuring the removal of xylan and lignin from the corn stover, as well as the production of glucose and xylose by subsequent enzymatic hydrolysis. The results indicated that the DES pretreatment resulted in significantly higher delignification rates (75%) than an organosolv pretreatment (35%) at the same processing temperature. The DES pretreatment also resulted in a more effective conversion of glucan (81%) and xylan (56%) than the organosolv pretreatment. The results indicated that DES pretreatment is a promising processing strategy for biomass utilization. 
    more » « less
  4. Abstract

    The selective transformation of lignin to value‐added biochemicals (e. g., phenolic acids) in high yields is incredibly challenging due to its structural complexity and many possible reaction pathways. Phenolic acids (PA) are key building blocks for various aromatic polymers, but the isolation of PAs from lignin is below 5 wt.% and requires harsh reaction conditions. Herein, we demonstrate an effective route to selectively convert lignin extracted from sweet sorghum and poplar into isolated PA in a high yield (up to 20 wt.% of lignin) using a low‐cost graphene oxide‐urea hydrogen peroxide (GO‐UHP) catalyst under mild conditions (<120 °C). The lignin conversion yield is up to 95 %, and the remaining low molecular weight organic oils are ready for aviation fuel production to complete lignin utilization. Mechanistic studies demonstrate that pre‐acetylation allows the selective depolymerization of lignin to aromatic aldehydes with a decent yield by GO through the Cα activation of β‐O‐4 cleavage. A urea‐hydrogen peroxide (UHP) oxidative process is followed to transform aldehydes in the depolymerized product to PAs by avoiding the undesired Dakin side reaction due to the electron‐withdrawing effect of the acetyl group. This study opens a new way to selectively cleave lignin side chains to isolated biochemicals under mild conditions.

     
    more » « less
  5. null (Ed.)
    Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin–DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology. 
    more » « less