skip to main content

Title: Concentration-gradient Prussian blue cathodes for Na-ion batteries
A concentration-gradient composition is proposed as an effective approach to solve the mechanical degradation and improve the electrochemical cyclability for cathodes of sodium-ion batteries. Concentration-gradient shell NaxNiyMn1-yFe(CN)6·nH2O, in which the Ni content gradually increases from the interior to the particle surface, is synthesized by a facile co-precipitation process. The as-obtained cathode exhibits an improved electrochemical performance compared to homogeneous NaxMnFe(CN)6·nH2O, delivering a high reversible specific capacity of 110 mA h g-1 at 0.2 C and outstanding cycling stability (93% retention after 1000 cycles at 5 C). The improvement of electrochemical performance can be attributed to its robust microstructure that effectively alleviates the electrochemically induced stresses and accumulated damage during sodiation/desodiation and thus prevents the initiation of fracture in the particles upon long term cycling. These findings render a prospective strategy to develop high-performance electrode materials for sodium-ion batteries.
Authors:
Award ID(s):
1762602
Publication Date:
NSF-PAR ID:
10178587
Journal Name:
ACS energy letters
Volume:
5
Page Range or eLocation-ID:
100-108
ISSN:
2380-8195
Sponsoring Org:
National Science Foundation
More Like this
  1. A concentration-gradient composition is proposed as an effective approach to solve the mechanical degradation and improve the electrochemical cyclability for cathodes of sodium-ion batteries. Concentration-gradient shell NaxNiyMn1-yFe(CN)6·nH2O, in which the Ni content gradually increases from the interior to the particle surface, is synthesized by a facile co-precipitation process. The as-obtained cathode exhibits an improved electrochemical performance compared to homogeneous NaxMnFe(CN)6·nH2O, delivering a high reversible specific capacity of 110 mA h g-1 at 0.2 C and outstanding cycling stability (93% retention after 1000 cycles at 5 C). The improvement of electrochemical performance can be attributed to its robust microstructure that effectively alleviates the electrochemically induced stresses and accumulated damage during sodiation/desodiation and thus prevents the initiation of fracture in the particles upon long term cycling. These findings render a prospective strategy to develop high-performance electrode materials for sodium-ion batteries.
  2. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) themore »porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions.« less
  3. Deriving battery grade materials from natural sources is a key element to establishing sustainable energy storage technologies. In this work, we present the use of avocado peels as a sustainable source for conversion into hard carbon-based anodes for sodium ion batteries. The avocado peels are simply washed and dried then proceeded to a high temperature conversion step. Materials characterization reveals conversion of the avocado peels in high purity, highly porous hard carbon powders. When prepared as anode materials they show to the capability to reversibly store and release sodium ions. The hard carbon-based electrodes exhibit excellent cycling performance, namely, a reversible capacity of 352.55 mAh g−1at 0.05 A g−1, rate capability up to 86 mAh g−1at 3500 mA g−1, capacity retention of >90%, and 99.9% coulombic efficiencies after 500 cycles. Cyclic voltammetry studies indicated that the storage process was diffusion-limited, with diffusion coefficient of 8.62 × 10−8cm2s−1. This study demonstrates avocado derived hard carbon as a sustainable source that can provide excellent electrochemical and battery performance as anodes in sodium ion batteries.

  4. We introduce an intermediate-temperature (350 °C) dry molten sodium hydroxide-mediated binder-free electrodeposition process to grow the previously electrochemically inaccessible air- and moisture-sensitive layered sodium transition metal oxides, NaxMO2(M = Co, Mn, Ni, Fe), in both thin and thick film form, compounds which are conventionally synthesized in powder form by solid-state reactions at temperatures ≥700 °C. As a key motivation for this work, several of these oxides are of interest as cathode materials for emerging sodium-ion–based electrochemical energy storage systems. Despite the low synthesis temperature and short reaction times, our electrodeposited oxides retain the key structural and electrochemical performance observed in high-temperature bulk synthesized materials. We demonstrate that tens of micrometers thick >75% dense NaxCoO2and NaxMnO2can be deposited in under 1 h. When used as cathodes for sodium-ion batteries, these materials exhibit near theoretical gravimetric capacities, chemical diffusion coefficients of Na+ions (∼10−12cm2⋅s−1), and high reversible areal capacities in the range ∼0.25 to 0.76 mA⋅h⋅cm−2, values significantly higher than those reported for binder-free sodium cathodes deposited by other techniques. The method described here resolves longstanding intrinsic challenges associated with traditional aqueous solution-based electrodeposition of ceramic oxides and opens a general solution chemistry approach for electrochemical processing of hitherto unexplored air- and moisture-sensitivemore »high valent multinary structures with extended frameworks.

    « less
  5. Silicon (Si) anodes are promising candidates for Li-ion batteries due to their high specific capacity and low operating potential. Implementation has been challenged by the significant Si volume changes during (de)lithiation and associated growth/regrowth of the solid electrolyte interphase (SEI). In this report, fluorinated local high concentration electrolytes (FLHCEs) were designed such that each component of the electrolyte (solvent, salt, diluent) is fluorinated to modify the chemistry and stabilize the SEI of high (30%) silicon content anodes. FLHCEs were formulated to probe the electrolyte salt concentration and ratio of the fluorinated carbonate solvents to a hydrofluoroether diluent. Higher salt concentrations led to higher viscosities, conductivities, and contact angles on polyethylene separators. Electrochemical cycling of Si-graphite/NMC622 pouch cells using the FLHCEs delivered up to 67% capacity retention after 100 cycles at a C/3 rate. Post-cycling X-ray photoelectron spectroscopy (XPS) analyses of the Si-graphite anodes indicated the FLHCEs formed a LiF rich solid electrolyte interphase (SEI). The findings show that the fluorinated local high concentration electrolytes contribute to stabilizing the Si-graphite electrode over extended cycling.