skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Intergenerational Commitment, Weak Sustainability, and Safety
This article examines sustainability from a policy perspective rooted in environmental economics and environmental ethics. Endorsing the Brundtland Commission stance that each generation should have undiminished opportunity to meet its own needs, I emphasize the foundational status of the intergenerational commitment. The standard concepts of weak and strong sustainability, WS and SS, are sketched and critiqued simply and intuitively, along with the more recent concept of WS-plus. A recently proposed model of a society dependent on a renewable but vulnerable resource (Barfuss et al. 2018) is introduced as an expositional tool, as its authors intended, and used as a platform for thought experiments exploring the role of risk management tools in reducing the need for safety. Key conclusions include: (i) Safety, in this case, the elimination of risk in uncertain production systems, comes at an opportunity cost that is often non-trivial. (ii) Welfare shocks can be cushioned by savings and diversification, which are enhanced by scale. Scale increases with geographic area, diversity of production, organizational complexity, and openness to trade and human migration. (iii) Increasing scale enables enhancement of sustainable welfare via local and regional specialization, and the need for safety and its attendant opportunity costs is reduced. (iv) When generational welfare is stochastic, the intergenerational commitment should not be abandoned but may need to be adapted to uncertainty, e.g., by expecting less from hard-luck generations and correspondingly more from more fortunate ones. (v) Intergenerational commitments must be resolved in the context of intragenerational obligations to each other in the here and now, and compensation of those asked to make sacrifices for sustainability has both ethical and pragmatic virtue. (vi) Finally, the normative domains of sustainability and safety can be distinguished—sustainability always, but safety only when facing daunting threats.  more » « less
Award ID(s):
1739909
PAR ID:
10178919
Author(s) / Creator(s):
Date Published:
Journal Name:
Sustainability
Volume:
12
Issue:
13
ISSN:
2071-1050
Page Range / eLocation ID:
5381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The objective is to provide an interpretive reading of the literature in resource scarcity and sustainability theory from the nineteenth century to the present time, focusing on shifts that have occurred in problem definition, conceptual framing, research tools applied, findings, and their implications. My reading shows, as one would expect, that the discourse has become more technical and the analysis more sophisticated; special cases have been incorporated into the mainstream of theory; and, where relevant, dynamic formulations have largely supplanted static analysis. However, that is barely scratching the surface. Here, I focus on more fundamental shifts. Exhaustible and renewable resource analyses were incorporated into the mainstream theory of financial and capital markets. Parallels between the resources and environmental spheres were discovered: market failure concepts, fundamental to environmental policy, found applications in the resources sector (e.g., fisheries), and renewable resource management concepts and approaches (e.g., waste assimilation capacity) were adopted in environmental policy. To motivate sustainability theory and assessment, there has been a foundational problem shift from restraining human greed to dealing with risk viewed as chance of harm, and a newfound willingness to look beyond stochastic risk to uncertainty, ambiguity, and gross ignorance. Newtonian dynamics, which seeks a stable equilibrium following a shock, gave way to a new dynamics of complexity that valued resilience in the face of shocks, warned of potential for regime shifts, and focused on the possibility of systemic collapse and recovery, perhaps incomplete. New concepts of sustainability (a safe minimum standard of conservation, the precautionary principle, and planetary boundaries) emerged, along with hybrid approaches such as WS-plus which treats weak sustainability (WS) as the default but may impose strong sustainability restrictions on a few essential but threatened resources. The strong sustainability objective has evolved from maintaining baseline flows of resource services to safety defined as minimizing the chance of irreversible collapse. New tools for management and policy (sustainability indicators and downscaled planetary boundaries) have proliferated, and still struggle to keep up with the emerging understanding of complex systems. 
    more » « less
  2. Weak sustainability, WS, attempts a comprehensive notion of sustainability, sustaining human welfare directly, or equivalently, sustaining inclusive wealth, IW, sufficient to sustain welfare. Sustainability is, in principle, forever, and accordingly, IW is conceived and assessed in a very long-term context. Given that future outcomes are unobservable, IW assessments are conducted in terms of expectations. However, this introduces pervasive circular reasoning: the calculated value of IW assumes that our expectations will be met, but that is the question. Optimistic expectations (for example) increase calculated IW, which, in turn, increases our confidence that our society is on a sustainable path. Given the logical difficulties of projecting IW into the future, analysts resort to tracking IW at regular intervals through the recent past. This reduces, but does not eliminate, the circularity problem. The signals from tracking IW are less than perfect from a policy perspective: they are too aggregate, perhaps masking impending crises regarding particular resources until it is too late; and too dependent on imperfect markets; and they document the recent past, so policy managers are always playing catch-up. WS-based sustainability policy frameworks include WS-plus, which invokes ad hoc strong sustainability, SS, patches to address threatened resource crises. It may also be possible to allow a degree of WS flexibility for individual jurisdictions within the constraints of a global safe operating space, SOS. 
    more » « less
  3. ABSTRACT Cropland redistribution to marginal land has been reported worldwide; however, the resulting impacts on environmental sustainability have not been investigated sufficiently. Here we investigated the environmental impacts of cropland redistribution in China. As a result of urbanization-induced loss of high-quality croplands in south China (∼8.5 t ha–1), croplands expanded to marginal lands in northeast (∼4.5 t ha–1) and northwest China (∼2.9 t ha–1) during 1990–2015 to pursue food security. However, the reclamation in these low-yield and ecologically vulnerable zones considerably undermined local environmental sustainability, for example increasing wind erosion (+3.47%), irrigation water consumption (+34.42%), fertilizer use (+20.02%) and decreasing natural habitats (−3.11%). Forecasts show that further reclamation in marginal lands per current policies would exacerbate environmental costs by 2050. The future cropland security risk will be remarkably intensified because of the conflict between food production and environmental sustainability. Our research suggests that globally emerging reclamation of marginal lands should be restricted and crop yield boost should be encouraged for both food security and environmental benefits. 
    more » « less
  4. null (Ed.)
    This article shows how sustainability indicators (SIs) which have proliferated, and downscaled planetary boundaries (DPBs) which have recently emerged, can be used to target remedial interventions. I offer an integrative analysis drawing upon the existing literature, challenging, clarifying, and amending it in some ways, and extending it with new insights. The exposition is couched in the example of pollution control, but the analysis also applies to resource management with only modest amendments. Key conclusions are summarized. (i) In a default case where damage is indifferent to location within the problem shed and transactions costs are trivial, minimizing abatement costs requires that all units face the same marginal price of emissions and can be implemented by price setting at the jurisdictional level or cap and trade in pollution reduction credits. Larger geographic scale tends to reduce the average cost of abatement, an argument for coordination at the problem-shed level. Deviations from the default policy may be appropriate for addressing large point sources and local hot spots where damage is concentrated. (ii) A framework winnowing the proliferation of SIs includes the following principles: for quantitative target setting, SIs should address sustainability in its long-term context; SIs should be measured in ratio scale, whereas ordinal-scale SIs are common; and SIs should be selected for their usefulness in mapping the relationships among emissions, ambient concentrations, and damage. (iii) Target setting requires science-based empirical relationships and social values to assess trade-offs between abatement and its opportunity costs and suggest upper limits on tolerable damage. (iv) PBs that address global public goods can usefully be downscaled to set abatement targets. The PBs are science based and, in their original form, propose replacing social values with imperatives: violating the PB will doom the planet, which is unacceptable given any plausible value system. Given that PB = ∑DPB over all jurisdictions, global trading of credits would minimize costs of honoring the PB. Trade among a willing subset of jurisdictions could minimize the costs of meeting its aggregate DPB. (v) In contrast to most SI approaches, a cost–benefit (CB) approach can deal with substitutability and complementarity among sustainability objectives and evaluate multi-component policies. Net benefits are maximized when the marginal cost of abatement equals the marginal benefit for all units in the problem shed. This can be attained by price setting at the jurisdictional level or trade in credits. (vi) A major advantage of the CB approach is its well-defined relationship to weak sustainability. However, its value measures over-weight the preferences of the well-off. Equity considerations suggest relief from strict CB criteria in the case of essentials such as human health and nutrition, and subsidization by rich countries of sustainability projects in low-income countries. 
    more » « less
  5. The oil and gas (O&G) sector is a critical energy infrastructure to a Nation’s welfare. As developed as the O&G industry may seem, its aging infrastructure gradually shows numerous challenges to keep up with the growing energy demand, increasing operation costs, and environmental concerns. A robust O&G infrastructure that is risk-free, reliable, and resilient towards expected or unexpected threats can offer an uninterrupted supply of O&G to downstream stakeholders, competitive prices to customers, and better environmental footprints. With the shift towards renewable energy, the notion of sustainable development should be firmly embedded in O&G infrastructure and operations to facilitate the smooth transition towards future renewable energy generation. This paper offers a comprehensive and innovative approach to achieving sustainable development for O&G infrastructure by examining it from a holistic risk, reliability, and resilience (3Rs) perspective. The role of each individual concept and their collective influence on sustainable development in the O&G industry will be thoroughly discussed. Moreover, this paper will highlight the significant impact of the holistic 3Rs approach on sustainable development and propose future research directions. Given the complexity of O&G infrastructure, it is crucial to incorporate sustainable development practices into every dimension of the O&G infrastructure, iteratively and continuously, to achieve the ultimate goal of long-term sustainability. This paper makes a significant contribution to the field by providing valuable insights and recommendations for achieving sustainable development in the O&G industry. 
    more » « less