skip to main content


Title: Determining the refractive index, absolute thickness and local slope of a thin transparent film using multi-wavelength and multi-incident-angle interference

We describe a high-speed interferometric method, using multiple angles of incidence and multiple wavelengths, to measure the absolute thickness, tilt, the local angle between the surfaces, and the refractive index of a fluctuating transparent wedge. The method is well suited for biological, fluid and industrial applications.

 
more » « less
NSF-PAR ID:
10178949
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
16
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 24198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    CpG sites within the same genomic region often share similar methylation patterns and tend to be co-regulated by multiple genetic variants that may interact with one another.

    Results

    We propose a multi-trait methylation random field (multi-MRF) method to evaluate the joint association between a set of CpG sites and a set of genetic variants. The proposed method has several advantages. First, it is a multi-trait method that allows flexible correlation structures between neighboring CpG sites (e.g. distance-based correlation). Second, it is also a multi-locus method that integrates the effect of multiple common and rare genetic variants. Third, it models the methylation traits with a beta distribution to characterize their bimodal and interval properties. Through simulations, we demonstrated that the proposed method had improved power over some existing methods under various disease scenarios. We further illustrated the proposed method via an application to a study of congenital heart defects (CHDs) with 83 cardiac tissue samples. Our results suggested that gene BACE2, a methylation quantitative trait locus (QTL) candidate, colocalized with expression QTLs in artery tibial and harbored genetic variants with nominal significant associations in two genome-wide association studies of CHD.

    Availability and implementation

    https://github.com/chenlyu2656/Multi-MRF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Background

    Single-photon emission computed tomography (SPECT) provides a mechanism to perform absorbed-dose quantification tasks for$$\alpha$$α-particle radiopharmaceutical therapies ($$\alpha$$α-RPTs). However, quantitative SPECT for$$\alpha$$α-RPT is challenging due to the low number of detected counts, the complex emission spectrum, and other image-degrading artifacts. Towards addressing these challenges, we propose a low-count quantitative SPECT reconstruction method for isotopes with multiple emission peaks.

    Methods

    Given the low-count setting, it is important that the reconstruction method extracts the maximal possible information from each detected photon. Processing data over multiple energy windows and in list-mode (LM) format provide mechanisms to achieve that objective. Towards this goal, we propose a list-mode multi energy window (LM-MEW) ordered-subsets expectation–maximization-based SPECT reconstruction method that uses data from multiple energy windows in LM format and include the energy attribute of each detected photon. For computational efficiency, we developed a multi-GPU-based implementation of this method. The method was evaluated using 2-D SPECT simulation studies in a single-scatter setting conducted in the context of imaging [$$^{223}$$223Ra]RaCl$${_2}$$2, an FDA-approved RPT for metastatic prostate cancer.

    Results

    The proposed method yielded improved performance on the task of estimating activity uptake within known regions of interest in comparison to approaches that use a single energy window or use binned data. The improved performance was observed in terms of both accuracy and precision and for different sizes of the region of interest.

    Conclusions

    Results of our studies show that the use of multiple energy windows and processing data in LM format with the proposed LM-MEW method led to improved quantification performance in low-count SPECT of isotopes with multiple emission peaks. These results motivate further development and validation of the LM-MEW method for such imaging applications, including for$$\alpha$$α-RPT SPECT.

     
    more » « less
  3. Summary

    In modern biomedical research, it is ubiquitous to have multiple data sets measured on the same set of samples from different views (i.e., multi-view data). For example, in genetic studies, multiple genomic data sets at different molecular levels or from different cell types are measured for a common set of individuals to investigate genetic regulation. Integration and reduction of multi-view data have the potential to leverage information in different data sets, and to reduce the magnitude and complexity of data for further statistical analysis and interpretation. In this article, we develop a novel statistical model, called supervised integrated factor analysis (SIFA), for integrative dimension reduction of multi-view data while incorporating auxiliary covariates. The model decomposes data into joint and individual factors, capturing the joint variation across multiple data sets and the individual variation specific to each set, respectively. Moreover, both joint and individual factors are partially informed by auxiliary covariates via nonparametric models. We devise a computationally efficient Expectation–Maximization (EM) algorithm to fit the model under some identifiability conditions. We apply the method to the Genotype-Tissue Expression (GTEx) data, and provide new insights into the variation decomposition of gene expression in multiple tissues. Extensive simulation studies and an additional application to a pediatric growth study demonstrate the advantage of the proposed method over competing methods.

     
    more » « less
  4. null (Ed.)

    Real-world spatio-temporal data is often incomplete or inaccurate due to various data loading delays. For example, a location-disease-time tensor of case counts can have multiple delayed updates of recent temporal slices for some locations or diseases. Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized tensor completion problem. Existing tensor completion methods usually assume that i) missing elements are randomly distributed and ii) noise for each tensor element is i.i.d. zero-mean. Both assumptions can be violated for spatio-temporal tensor data. We often observe multiple versions of the input tensor with different under-reporting noise levels. The amount of noise can be time- or location-dependent as more updates are progressively introduced to the tensor. We model such dynamic data as a multi-version tensor with an extra tensor mode capturing the data updates. We propose a low-rank tensor model to predict the updates over time. We demonstrate that our method can accurately predict the ground-truth values of many real-world tensors. We obtain up to 27.2% lower root mean-squared-error compared to the best baseline method. Finally, we extend our method to track the tensor data over time, leading to significant computational savings.

     
    more » « less
  5. Dynamic topic models (DTM) are commonly used for mining latent topics in evolving web corpora. In this paper, we note that a major limitation of the conventional DTM based models is that they assume a predetermined and fixed scale of topics. In reality, however, topics may have varying spans and topics of multiple scales can co-exist in a single web or social media data stream. Therefore, DTMs that assume a fixed epoch length may not be able to effectively capture latent topics and thus negatively affect accuracy. In this paper, we propose a Multi-Scale Dynamic Topic Model (MS-DTM) and a complementary Incremental Multi-Scale Dynamic Topic Model (IMS-DTM) inference method that can be used to capture latent topics and their dynamics simultaneously, at different scales. In this model, topic specific feature distributions are generated based on a multi-scale feature distribution of the previous epochs; moreover, multiple scales of the current epoch are analyzed together through a novel multi-scale incremental Gibbs sampling technique. We show that the proposed model significantly improves efficiency and effectiveness compared to the single scale dynamic DTMs and prior models that consider only multiple scales of the past.

     
    more » « less