skip to main content


Title: Playful coding and playful learning among future early childhood educators
This research examined how undergraduates majoring in Early Childhood Education (a) engaged with robot coding and (b) designed to engage preschoolers in learning with robots. A symbolic interactionism perspective was applied to examine how and why these future early childhood education teachers learned to code and planned lessons integrating robots into preschoolers’ play. The central research question was: How and why do pre-service early childhood teachers use robotics in preschoolers’ play?  more » « less
Award ID(s):
1927595
NSF-PAR ID:
10179059
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2020 Meeting of the International Conference of the Learning Sciences
Volume:
4
Page Range / eLocation ID:
2411-2412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research examined how undergraduates majoring in Early Childhood Education (a) engaged with robot coding and (b) designed to engage preschoolers in learning with robots. A symbolic interactionism perspective was applied to examine how and why these future early childhood education teachers learned to code and planned lessons integrating robots into preschoolers’ play. The central research question was: How and why do pre-service early childhood teachers use robotics in preschoolers’ play? 
    more » « less
  2. It is often said that computer science is for all students. This implies that it is also for early childhood students, including preschoolers, kindergarteners, and early elementary schoolers. To integrate computer science education into early childhood education, it is necessary to prepare early childhood teachers to do so. In this study, we investigated how and why 15 preservice, early childhood teachers reacted to and addressed challenges when creating block-based programming to control robots. Data sources included classroom recordings, interviews, lesson artifacts, and questionnaires. Analysis strategies included open and axial coding. Findings on hypothesis generation, guess-and-check practice, stereotypical conception, and adaptive attribution to success in programming are discussed. 
    more » « less
  3. The specific mechanisms by which teachers and parents can provide culturally relevant opportunities for computational thinking for racially/ethnically and linguistically diverse groups of preschoolers remain unknown. Accordingly, the purpose of this research is to examine how PreK parent and teacher voice directed efforts to realize a culturally relevant computing program. We drew data sources from a subsample of design-based research meetings in which partners collaborated to co-develop the first iteration of the program. Using qualitative analysis, we examined how parent voice and teacher voice, conceptualized as perspectives and participation, influenced theories of culturally responsive computing and computational thinking in early childhood education and the translation of theory into practice in classroom and home settings. Findings showed that connecting powerful ideas from computational thinking, namely algorithms and problem solving (e.g., debugging), to familiar activities and experiences served as a powerful entry point. Yet, differences arose in how teachers and parents conceptualized culturally relevant computing and made connections to familiar routines. We discuss what can be learned from parent voice in regards to bolstering children's self-expression, access to increasingly complex computational thinking tasks, and opportunities for learning cultural and community values through computing. 
    more » « less
  4. What if the environment could be transformed in culturally-responsive and inclusive ways to foster high-quality interactions and spark conversations that drive learning? In this article, we describe a new initiative accomplishing this, called Playful Learning Landscapes (PLL). PLL is an evidence-based initiative that blends findings from the science of learning with community-based participatory research to transform physical public spaces and educational settings into playful learning hubs. Here, we describe our model for conducting this research, which is mindful of three key components: community input, how children learn best, and what children need to learn to be successful in the 21st century economy. We describe how this model was implemented in two PLL case studies: one in a predominantly Latine community and the second in early childhood education classrooms. Furthermore, we describe how research employing our model can be rigorously and reliably evaluated using observational and methodological tools that respond to diverse cultural settings and learning outcomes. For example, our work evaluates how PLL impacts adult–child interaction quality and language use, attitudes about play and learning, and community civic engagement. Taken together, this article highlights new ways to involve community voices in developmental and educational research and provides a model of how science can be translated into practice and evaluated in culturally responsive ways. This synthesis of our process and evaluation can be used by researchers, policymakers, and educators to reimagine early educational experiences with an eye toward the built environment that children inhabit in everyday life, creating opportunities that foster lifelong learning. 
    more » « less
  5. This paper took up the tradition of Critical Feminism and Ethnography to examine early childhood education (ECE) pre-service teachers’ perspectives on STEM and robotics integration. The central research questions are (1) How can we make sense of preservice teachers’ formation of STEM/STEAM teacher identity while participating in our robotic unit from a Critical Feminist perspective? (2) What are preservice teachers’ perceptions of benefits, barriers and concerns (both structural level and individual level), and recommendations for pedagogical practice for STEM and robotics integration in ECE? (3) How can we better prepare and support pre-service teachers, largely women and non-STEM-majors, for STEM and robotics content integration in their classrooms? To answer the above questions, we collected interview data from 76 informants from a large public university in the Southeastern United States. Each informant designed a lesson plan on teaching with robots and completed approximately 30-minute structured interviews. We focused on our informants' lived experiences and centered their voices while conducting and analyzing the interviews via thematic coding and category analysis. Analysis of the interview stories indicated that our informants considered the robotics module in their pre-service training as a valuable learning experience of STEM/robotics integration in ECE. The three most commonly perceived benefits of STEM/robotics integration by pre-service teachers are early exposure helps build a STEM knowledge foundation (n = 66), STEM and robotics content effectively increases students’ motivation and engagement (n = 60), and bridging the gender gap in STEM as historically male-dominated fields (n = 27). The three most commonly perceived barriers are concern about age-appropriateness of robots (n = 53), time/state standard constraints (n = 35), and funding/resources available and support from the school and local district (n = 18). Our findings indicate structural and institutional barriers are still present and can potentially deter ECE teachers from implementing STEM/robotics content in their classrooms. We thus call for attention from a structural level instead of shifting the burdens onto both pre-service and in-service teachers. Employing a conscious effort of being self-reflexive, critical, and counter-hegemonic in our practices, this article is one of the first to approach motivation from a Critical Feminism perspective in the field and provides tangible implications for both engineering education research and practice. 
    more » « less