Abstract A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb–O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the β-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked β-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the β-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb–O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.
more »
« less
The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function
An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG dinucleotides: if the DNA nucleotide cytosine (C) is immediately 5′ to guanine (G) on the same coding strand, then—depending on methylation status—point mutations at both sites occur at an elevated rate relative to mutations at non-CpG sites. Here, we examine experimental data from case studies in which it has been possible to identify the causative substitutions that are responsible for adaptive changes in the functional properties of vertebrate haemoglobin (Hb). Specifically, we examine the molecular basis of convergent increases in Hb–O 2 affinity in high-altitude birds. Using a dataset of experimentally verified, affinity-enhancing mutations in the Hbs of highland avian taxa, we tested whether causative changes are enriched for mutations at CpG dinucleotides relative to the frequency of CpG mutations among all possible missense mutations. The tests revealed that a disproportionate number of causative amino acid replacements were attributable to CpG mutations, suggesting that mutation bias can influence outcomes of molecular adaptation. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’.
more »
« less
- Award ID(s):
- 1736249
- PAR ID:
- 10179127
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 374
- Issue:
- 1777
- ISSN:
- 0962-8436
- Page Range / eLocation ID:
- 20180238
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks.more » « less
-
Abstract Variation in DNA methylation is associated with many ecological and life history traits, including niche breadth and lifespan. In vertebrates, DNA methylation occurs almost exclusively at “CpG” dinucleotides. Yet, how variation in the CpG content of the genome impacts organismal ecology has been largely overlooked. Here, we explore associations between promoter CpG content, lifespan and niche breadth among 60, amniote vertebrate species. The CpG content of 16 functionally relevant gene promoters was strongly, positively associated with lifespan in mammals and reptiles, but was not related to niche breadth. Possibly, by providing more substrate for CpG methylation to occur, high promoter CpG content extends the time taken for deleterious, age-related errors in CpG methylation patterns to accumulate, thereby extending lifespan. The association between CpG content and lifespan was driven by gene promoters with intermediate CpG enrichment—those known to be predisposed to regulation by methylation. Our findings provide novel support for the idea that high CpG content has been selected for in long-lived species to preserve the capacity for gene expression regulation by CpG methylation. Intriguingly, promoter CpG content was also dependent on gene function in our study; immune genes had on average 20% less CpG sites than metabolic- and stress-related genes.more » « less
-
Somero, George N. (Ed.)Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time.more » « less
-
Agashe, Deepa (Ed.)Abstract The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca. We sequenced three pedigreed families of the white abalone Haliotis sorenseni, a long-lived, large-bodied, and critically endangered mollusk, and estimated a de novo mutation rate of 8.60 × 10−9 single nucleotide mutations per site per generation. This mutation rate is similar to rates measured in vertebrates with comparable generation times and longevity to abalone, and higher than mutation rates measured in faster-reproducing invertebrates. The spectrum of de novo mutations is also similar to that seen in vertebrate species, although an excess of rare C > A polymorphisms in wild individuals suggests that a modifier allele or environmental exposure may have once increased C > A mutation rates. We use our rate to infer baseline effective population sizes (Ne) across multiple Pacific abalone and find that abalone persisted over most of their evolutionary history as large and stable populations, in contrast to extreme fluctuations over recent history and small census sizes in the present day. We then use our mutation rate to infer the timing and pattern of evolution of the abalone genus Haliotis, which was previously unknown due to few fossil calibrations. Our findings are an important step toward understanding mutation rate evolution and they establish a key parameter for conservation and evolutionary genomics research in mollusks.more » « less
An official website of the United States government

