We investigate the problem of assembling general shapes and patterns in a model in which particles move based on uniform external forces until they encounter an obstacle. In this model, corresponding particles may bond when adjacent with one another. Succinctly, this model considers a 2D grid of “open” and “blocked” spaces, along with a set of slidable polyominoes placed at open locations on the board. The board may be tilted in any of the 4 cardinal directions, causing all slidable polyominoes to move maximally in the specified direction until blocked. By successively applying a sequence of such tilts, along with allowing different polyominoes to stick when adjacent, tilt sequences provide a method to reconfigure an initial board configuration so as to assemble a collection of previous separate polyominoes into a larger shape. While previous work within this model of assembly has focused on designing a specific board configuration for the assembly of a specific given shape, we propose the problem of designing universal configurations that are capable of constructing a large class of shapes and patterns. For these constructions, we present the notions of weak and strong universality which indicate the presence of “excess” polyominoes after the shape is constructed. In particular, for given integers h, w, we show that there exists a weakly universal configuration with O(hw) 1 × 1 slidable particles that can be reconfigured to build any h × w patterned rectangle. We then expand this result to show that there exists a weakly universal configuration that can build any h × w-bounded size connected shape. Following these results, which require an admittedly relaxed assembly definition, we go on to show the existence of a strongly universal configuration (no excess particles) which can assemble any shape within a previously studied “drop” class, while using quadratically less space than previous results. Finally, we include a study of the complexity of deciding if a particle within a configuration may be relocated to another position, and deciding if a given configuration may be transformed into a second given configuration. We show both problems to be PSPACE-complete even when no particles stick to one another and movable particles are restricted to 1 × 1 tiles and a single 2 × 2 polyomino.
more »
« less
Relocation with uniform external control in limited directions
We study a model where particles exist within a board and move single units based on uniform external forces. We investigate the complexity of deciding whether a single particle can be relocated to another position in the board, and whether a board configuration can be transformed into another configuration. We prove that the problems are NP-complete with 1× 1 particles even when only allowed to move in 2 or 3 directions.
more »
« less
- Award ID(s):
- 1817602
- PAR ID:
- 10179129
- Date Published:
- Journal Name:
- The 22nd Japan Conference on Discrete and Computational Geometry, Graphs, and Games, JCDCGGG
- Page Range / eLocation ID:
- 39-40
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate algorithmic control of a large swarm of mobile particles (such as robots, sensors, or building material) that move in a 2D workspace using a global input signal (such as gravity or a magnetic field). Upon activation of the field, each particle moves maximally in the same direction until forward progress is blocked by a stationary obstacle or another stationary particle. In an open workspace, this system model is of limited use because it has only two controllable degrees of freedom—all particles receive the same inputs and move uniformly. We show that adding a maze of obstacles to the environment can make the system drastically more complex but also more useful. We provide a wide range of results for a wide range of questions. These can be subdivided into external algorithmic problems, in which particle configurations serve as input for computations that are performed elsewhere, and internal logic problems, in which the particle configurations themselves are used for carrying out computations. For external algorithms, we give both negative and positive results. If we are given a set of stationary obstacles, we prove that it is NP-hard to decide whether a given initial configuration of unit-sized particles can be transformed into a desired target configuration. Moreover, we show that finding a control sequence of minimum length is PSPACE-complete. We also work on the inverse problem, providing constructive algorithms to design workspaces that efficiently implement arbitrary permutations between different configurations. For internal logic, we investigate how arbitrary computations can be implemented. We demonstrate how to encode dual-rail logic to build a universal logic gate that concurrently evaluates AND, NAND, NOR, and OR operations. Using many of these gates and appropriate interconnects, we can evaluate any logical expression. However, we establish that simulating the full range of complex interactions present in arbitrary digital circuits encounters a fundamental difficulty: a FAN-OUT gate cannot be generated. We resolve this missing component with the help of 2 9 1 particles, which can create FAN-OUT gates that produce multiple copies of the inputs. Using these gates we provide rules for replicating arbitrary digital circuits.more » « less
-
Hierarchical Shape Construction and Complexity for Slidable Polyominos under Uniform External ForcesAdvances in technology have given us the ability to create and manipulate robots for numerous applications at the molecular scale. At this size, fabrication tool limitations motivate the use of simple robots. The individual control of these simple objects can be infeasible. We investigate a model of robot motion planning, based on global external signals, known as the tilt model. Given a board and initial placement of polyominoes, the board may be tilted in any of the 4 cardinal directions, causing all slidable polyominoes to move maximally in the specified direction until blocked.We propose a new hierarchy of shapes and design a single configuration that is strongly universal for any w×h bounded shape within this hierarchy (it can be reconfigured to construct any w×h bounded shape in the hierarchy). This class of shapes constitutes the most general set of buildable shapes in the literature, with most previous work consisting of just the first-level of our hierarchy. We accompany this result with a O(n4logn)-time algorithm for deciding if a given hole-free shape is a member of the hierarchy. For our second result, we resolve a long-standing open problem within the field: We show that deciding if a given position may be covered by a tile for a given initial board configuration is PSPACE-complete, even when all movable pieces are 1×1 tiles with no glues. We achieve this result by a reduction from Non-deterministic Constraint Logic for a one-player unbounded game.more » « less
-
For biomedical applications in targeted therapy delivery and interventions, a large swarm of micro-scale particles (“agents”) has to be moved through a maze-like environment (“vascular system”) to a target region (“tumor”). Due to limited on-board capabilities, these agents cannot move autonomously; instead, they are controlled by an external global force that acts uniformly on all particles. In this work, we demonstrate how to use a time-varying magnetic field to gather particles to a desired location. We use reinforcement learning to train networks to efficiently gather particles. Methods to overcome the simulation-to-reality gap are explained, and the trained networks are deployed on a set of mazes and goal locations. The hardware experiments demonstrate fast convergence, and robustness to both sensor and actuation noise. To encourage extensions and to serve as a benchmark for the reinforcement learning community, the code is available at Github.more » « less
-
We present local distributed, stochastic algorithms for alignment in self-organizing particle systems (SOPS) on two-dimensional lattices, where particles occupy unique sites on the lattice, and particles can make spatial moves to neighboring sites if they are unoccupied. Such models are abstractions of programmable matter, composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational capabilities. We consider oriented particle systems, where particles are assigned a vector pointing in one of q directions, and each particle can compute the angle between its direction and the direction of any neighboring particle, although without knowledge of global orientation with respect to a fixed underlying coordinate system. Particles move stochastically, with each particle able to either modify its direction or make a local spatial move along a lattice edge during a move. We consider two settings: (a) where particle configurations must remain simply connected at all times and (b) where spatial moves are unconstrained and configurations can disconnect. Our algorithms are inspired by the Potts model and its planar oriented variant known as the planar Potts model or clock model from statistical physics. We prove that for any q ≥ 2, by adjusting a single parameter, these self-organizing particle systems can be made to collectively align along a single dominant direction (analogous to a solid or ordered state) or remain non-aligned, in which case the fraction of particles oriented along any direction is nearly equal (analogous to a gaseous or disordered state). In the connected SOPS setting, we allow for two distinct parameters, one controlling the ferromagnetic attraction between neighboring particles (regardless of orientation) and the other controlling the preference of neighboring particles to align. We show that with appropriate settings of the input parameters, we can achieve compression and expansion, controlling how tightly gathered the particles are, as well as alignment or nonalignment, producing a single dominant orientation or not. While alignment is known for the Potts and clock models at sufficiently low temperatures, our proof in the SOPS setting are significantly more challenging because the particles make spatial moves, not all sites are occupied, and the total number of particles is fixed.more » « less
An official website of the United States government

