skip to main content

Title: Engineered telecom emission and controlled positioning of Er3+ enabled by SiC nanophotonic structures
Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect density as determined by low-temperature time-resolved PL measurements. Additionally, the NW-PC structures enable the positioning of erbium (Er 3+ ) ions with an accuracy of 10 nm, an improvement on the current state-of-the-art ion implantation processes, and allow strong coupling of Er 3+ ions in NW-PC. The NW-PC structure is pivotal in engineering the Er 3+ -induced 1540-nm emission, which is the telecommunication wavelength used in optical fibers. An approximately 60-fold increase in the room-temperature Er 3+ PL emission is observed in NW-PC compared to its thin-film analog in the linear pumping regime. Furthermore, 22 times increase in the Er 3+ more » PL intensity per number of exited Er ions in NW-PC was observed at saturation while using 20 times lower pumping power. The NW-PC structures demonstrate broadband and efficient excitation characteristics for Er 3+ , with an absorption cross-section (~2 × 10 −18 cm 2 ) two-order larger than typical benchmark values for direct absorption in rare-earth-doped quantum materials. Experimental and simulation results show that the Er 3+ PL is photostable at high pumping power and polarized in NW-PC and is modulated with NW-PC lattice periodicity. The observed characteristics from these technologically friendly nanophotonic structures provide a promising route to the development of scalable nanophotonics and formation of single-photon emitters in the telecom optical wavelength band. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1842350
Publication Date:
NSF-PAR ID:
10179142
Journal Name:
Nanophotonics
Volume:
9
Issue:
6
Page Range or eLocation-ID:
1425 to 1437
ISSN:
2192-8606
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Engineering arrays of active optical centers to control the interaction Hamiltonian between light and matter has been the subject of intense research recently. Collective interaction of atomic arrays with optical photons can give rise to directionally enhanced absorption or emission, which enables engineering of broadband and strong atom-photon interfaces. Here, we report on the observation of long-range cooperative resonances in an array of rare-earth ions controllably implanted into a solid-state lithium niobate micro-ring resonator. We show that cooperative effects can be observed in an ordered ion array extended far beyond the light’s wavelength. We observe enhanced emission from bothmore »cavity-induced Purcell enhancement and array-induced collective resonances at cryogenic temperatures. Engineering collective resonances as a paradigm for enhanced light-matter interactions can enable suppression of free-space spontaneous emission. The multi-functionality of lithium niobate hosting rare-earth ions can open possibilities of quantum photonic device engineering for scalable and multiplexed quantum networks.« less
  2. The field of semiconductor nanowires (NWs) has become one of the most active and mature research areas. However, progress in this field has been limited, due to the difficulty in controlling the density, orientation, and placement of the individual NWs, parameters important for mass producing nanodevices. The work presented herein describes a novel nanosynthesis strategy for ultrathin self-aligned silicon carbide (SiC) NW arrays (≤ 20 nm width, 130 nm height and 200–600 nm variable periodicity), with high quality (~2 Å surface roughness, ~2.4 eV optical bandgap) and reproducibility at predetermined locations, using fabrication protocols compatible with silicon microelectronics. Fourier transformmore »infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopic ellipsometry, atomic force microscopy, X-ray diffractometry, and transmission electron microscopy studies show nanosynthesis of high-quality polycrystalline cubic 3C-SiC materials (average 5 nm grain size) with tailored properties. An extension of the nanofabrication process is presented for integrating technologically important erbium ions as emission centers at telecom C-band wavelengths. This integration allows for deterministic positioning of the ions and engineering of the ions’ spontaneous emission properties through the resulting NW-based photonic structures, both of which are critical to practical device fabrication for quantum information applications. This holistic approach can enable the development of new scalable SiC nanostructured materials for use in a plethora of emerging applications, such as NW-based sensing, single-photon sources, quantum LEDs, and quantum photonics.« less
  3. Fluorides are promising host materials for optical applications. This paper reports the photoluminescent (PL) and cathodoluminescent (CL) characteristics of barium hexafluorogermanate BaGeF 6 nanowires codoped with Ce 3+ , Tb 3+ and Sm 3+ rare earth ions, produced by a solvothermal route. The synthesized BaGeF 6 nanowires exhibit uniform morphology and size distribution. X-ray diffraction divulges the one-dimensional growth of crystalline BaGeF 6 structure, with the absence of any impurity phases. Visible luminescence is recorded from the nanowires in green and red regions, when the nanowires are codoped with Ce 3+ /Tb 3+ , and Ce 3+ /Tb 3+ /Smmore »3+ , respectively, under a UV excitation source. The PL emission from the codoped BaGeF 6 nanowires, when excited by a 254 nm source, originates from the efficient energy transfer bridges between Ce 3+ , Tb 3+ and Sm 3+ ions. The decay time of the visible luminescent emission from the nanowires is in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. The CL emission from the BaGeF 6 nanowires in the tunable visible range reveals their potential use for the detection of high-energy radiation. The PL emissions are sensitive to H 2 O 2 at low concentrations, enabling their high-sensitivity detection of H 2 O 2 using BaGeF 6 nanowires. A comparison with BaSiF 6 nanowires is made in terms of decay time and its sensitivity towards H 2 O 2 .« less
  4. It is general knowledge in persistent luminescence that high-energy illumination, mostly ultraviolet light, is usually necessary in order to effectively charge persistent phosphors. However, the need for high-energy ultraviolet light excitation compromises some applications. In his pioneering work on ruby (Al 2 O 3 :Cr 3+ ) laser materials in 1960, Theodore Maiman observed an excited-state absorption phenomenon under the excitation of a high-intensity green-light flash tube. Inspired by Maiman's observation, here we propose a new two-photon up-conversion charging (UCC) concept to effectively charge Cr 3+ -activated near-infrared persistent phosphors using low-energy, high-intensity visible-light laser diodes. As an example, wemore »demonstrate that a low-energy 635 nm laser diode can produce persistent luminescence in the LiGa 5 O 8 :Cr 3+ persistent phosphor at the same magnitude as that produced by high-energy 335 nm ultraviolet light from a xenon arc lamp. Moreover, the UCC appears to be a common phenomenon in persistent phosphors containing other UCC-enabling activators such as rare-earth Pr 3+ ions and transition metal Mn 2+ ions. The UCC technique offers a new way to study persistent luminescence and utilize persistent phosphors; for instance, in bioimaging it makes effective in vivo charging persistent optical probes using tissue-friendly visible light possible.« less
  5. Complex alkaline earth silicates have been extensively studied as rare-earth substituted phosphor hosts for use in solid-state lighting. One of the biggest challenges facing the development of new phosphors is understanding the relationship between the observed optical properties and the crystal structure. Fortunately, recent improvements in characterization techniques combined with advances in computational methodologies provide the research tools necessary to conduct a comprehensive analysis of these systems. In this work, a new Ce 3+ substituted phosphor is developed using Ba 5 Si 8 O 21 as the host crystal structure. The compound is evaluated using a combination of experimental andmore »computational methods and shows Ba 5 Si 8 O 21 :Ce 3+ adopts a monoclinic crystal structure that was confirmed through Rietveld refinement of high-resolution synchrotron powder X-ray diffraction data. Photoluminescence spectroscopy reveals a broad-band blue emission centered at ∼440 nm with an absolute quantum yield of ∼45% under ultraviolet light excitation ( λ ex = 340 nm). This phosphor also shows a minimal chromaticity-drift but with moderate thermal quenching of the emission peak at elevated temperatures. The modest optical response of this phase is believed to stem from a combination of intrinsic structural complexity and the formation of defects because of the aliovalent rare-earth substitution. Finally, computational modeling provides essential insight into the site preference and energy level distribution of Ce 3+ in this compound. These results highlight the importance of using experiment and computation in tandem to interpret the relationship between observed optical properties and the crystal structures of all rare-earth substituted complex phosphors.« less