skip to main content


Title: Formation of resorcinol-formaldehyde hollow nanoshells through a dissolution–regrowth process
We report here that dissolution and regrowth of resorcinol formaldehyde (RF) colloidal particles can occur spontaneously when they are subjected to etching in solvents such as ethanol and tetrahydrofuran, resulting in the formation of hollow nanostructures with controllable shell thickness. The hollowing process of the RF particles is attributed to their structural inhomogeneity, which results from the successive deposition of oligomers with different chain lengths during their initial growth. As the near-surface layer of RF colloids mainly consists of long-chain oligomers while the inner part consists of short-chain oligomers, selective etching removes the latter and produces the hollow structures. By revealing the important effects of the condensation degree of RF, the etching time and temperature, and the composition of solvents, we demonstrate that the morphology and structure of the resulting RF nanostructures can be conveniently and precisely controlled. This study not only improves our understanding of the structural heterogeneity of colloidal polymer particles, but also provides a practical and universal self-templated approach for the synthesis of hollow nanostructures.  more » « less
Award ID(s):
1810485
NSF-PAR ID:
10179382
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
28
ISSN:
2040-3364
Page Range / eLocation ID:
15460 to 15465
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanostructured MnO2are gaining great research interest because of their wide applications ranging from optical and electronic devices to energy storage and catalysis. However, the formation of a well‐defined MnO2coating on the surface of various colloidal objects has been challenging due to surface incompatibility. Here, we report a unique and robust surface‐initiated redox route to the controlled deposition of MnO2on colloidal particles, which can be employed to produce high‐quality hollow MnO2nanoshells and a variety of MnO2coated nanocomposites. Colloidal resorcinol formaldehyde (RF) resin spheres serve as both reducing agents and sacrificial templates to initiate the controlled deposition of MnO2on their surfaces. Further, the RF resin can also be coated on the surface of other colloidal nanostructures to allow overcoating of MnO2through the redox reaction and produce nanocomposites such as SiO2@MnO2and Au@MnO2. The size and thickness of the MnO2nanoshells can be tuned precisely to induce resonant Mie scattering, leading to bright colorations that can shift reversibly in response to the changes in the refractive index of the surroundings.

     
    more » « less
  2. null (Ed.)
    Solution-processed semiconducting main-group chalcogenides (MMCs) have attracted increasing research interest for next-generation device technologies owing to their unique nanostructures and superior properties. To achieve the full potential of MMCs, the development of highly universal, scalable, and sustainable synthesis and processing methods of chalcogenide particles is thus becoming progressively more important. Here we studied scalable factors for the synthesis of two-dimensional (2D) V–VI chalcogenide nanoplates (M 2 Q 3  : M = Sb, Bi; Q = Se, Te) and systematically investigated their colloidal behaviour and chemical stability. Based on a solvent engineering technique, we demonstrated scale-up syntheses of MMCs up to a 900% increase of batch size compared with conventional hydrazine-based gram-level syntheses, and such a scalable approach is highly applicable to various binary and ternary MMCs. Furthermore, we studied the stability of printable chalcogenide nanoparticle inks with several formulation factors including solvents, additives, and pH values, resulting in inks with high chemical stability (>4 months). As a proof of concept, we applied our solution-processed chalcogenide particles to multiple additive manufacturing methods, confirming the high printability and processability of MMC inks. The ability to combine the top-down designing freedom of additive manufacturing with bottom-up scalable synthesis of chalcogenide particles promises great opportunities for large-scale design and manufacturing of chalcogenide-based functional devices for broad application. 
    more » « less
  3. Fe2O3 is an appealing anode material due to its high specific capacity (1007 mAh g− 1), low cost, natural abundance, and nontoxicity. However, its unstable structure during cycling processes has hindered its potential. In this study, we present a “green” synthesis method to fabricate stable porous Fe2O3 encapsulated in a buffering hollow structure (p-Fe2O3@h-TiO2) as an effective anode material for Li-ion batteries. The synthesis process only involves glucose as an “etching” agent, without the need for organic solvents or difficult-to-control environments. Characterizations of the nanostructures, chemical compositions, crystallizations, and thermal behaviors for the intermediate/final products confirm the formation of p-Fe2O3@h-TiO2. The synthesized Fe2O3 anode material effectively accommodates volume change, decreases pulverization, and alleviates agglomeration, leading to a high capacity that is over eleven times greater than that of the as-received commercial Fe2O3 after a long cycling process. This work provides an attractive, “green” and efficient method to convert commercially abundant resources like Fe2O3 into effective electrode materials for energy storage systems. 
    more » « less
  4. Abstract

    Corrosion is a significant problem for the stability of structural metals and potentially for functional nanomaterials in operating environments. When two metals with different electrochemical potentials form a junction, galvanic corrosion occurs, resulting in the sacrificial dissolution of the metal with a higher oxidation potential (lower electrode potential). Here, it is shown that bimetallic hetero‐nanostructures composed of phase‐segregated metals undergo galvanic corrosion in aqueous environments. Such selective etching of the sacrificial metal in heterojunction particles leads to the formation of unusual and kinetically stabilized half‐spheroid particles. By using a fluid cell and in situ scanning transmission electron microscopy, a two‐stage corrosion process can be observed where the Cu experiences a fractal breakdown before the Ag corrodes due to the lack of a protective oxide layer. However, when treated with a mild Ar plasma, the stability of these structures against corrosion is enhanced due to the conversion of the amorphous native oxide to a denser, thin layer of CuO on the Cu surface. Taken together, this work highlights the importance of considering the effects of galvanic corrosion on the stability of multicomponent nanoparticles, and it shows how mass transport in a nanoscale system is influenced by redox processes.

     
    more » « less
  5. Abstract

    The galvanic replacement reaction is a robust tool for the controlled synthesis of hollow and semihollow bimetallic nanostructures, which have applications in a range of science, engineering, and medical fields due to the tunability of their localized surface plasmon resonances (LSPRs) and surface chemistry. Here, a controllable galvanic replacement of Ag by Au coupled with coreduction is described, performed in nonaqueous solvents including methanol, ethanol, and anN,N‐dimethylformamide:toluene mixture and yielding hollow and semihollow alloyed nanoparticles. Structural control, from semihollow to nanoshell, and plasmon tunability are demonstrated via control of the Au:Ag stoichiometry. The high structural dependence on temperature is shown, with striking changes in nanoparticle surface smoothness and pinhole density, and reveals the optimal reaction temperature to be 65 °C in alcohols. Through optimizing this reaction, smooth closed shell AgAu alloy nanoparticles with LSPRs tunable from 494 to 567 nm are obtained. This work provides a framework for galvanic replacement of large anisotropic Ag nanoparticles with Au in nonaqueous media, which can be extended to other solvent systems suitable for air‐sensitive metals and precursors.

     
    more » « less