skip to main content


Title: Bone-inspired healing of 3D-printed porous ceramics
Emerging 3D-printed ceramics, though showing unprecedented application potential, are typically vulnerable to fractures and unable to heal at room temperature. By contrast, their natural counterparts, human bones, exhibit extraordinary self-healing capability through the activation of stem cell osteoblasts that precipitate mineralized calluses to enable interfacial healing at body temperature. Inspired by bones, we here employ bacteria as artificial osteoblasts to enable healing of 3D-printed porous ceramics at room temperature. The healing behavior relies on bacteria-initiated precipitation of calcium carbonate crystals to bridge fracture interfaces of ceramics. We show that bacteria-loaded porous ceramics can heal fracture interfaces to restore 100% mechanical strength at room temperature, and the healed strength is not compromised by heating up to 500 C or by corrosion of alkalis and oxidants. The bacteria-assisted healing mechanism is revealed by systematic control experiments, and the healing strength is explained by cohesive fracture modeling. We further incorporate this method into 3D-printed ceramics and demonstrate on-demand healing of ceramic dental crowns, ceramic water membranes, and ceramic lattices, and autonomous healing of ceramic armor. As the first-generation healing mechanism of 3D-printed ceramics, this paradigm is expected to open promising avenues for revolutionizing the low-damage-tolerance nature of existing 3D-printed ceramics.  more » « less
Award ID(s):
1762567
NSF-PAR ID:
10179399
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Horizons
ISSN:
2051-6347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The macro-porous ceramics has promising durability and thermal insulation performance. As porous ceramics find more and more applications across many industries, a cost-effective and scalable additive manufacturing technique for fabricating macro-porous ceramics is highly desirable. Herein, we reported a facile additive manufacturing approach to fabricate porous ceramics and control the printed porosity. Several printable ceramic inks were prepared, and the foaming agent was added to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. A set of experimental studies were performed to optimize the printing quality. The results revealed the optimal process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enables the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics possessed enhanced durability with the addition of fiber. With a high-fidelity three-dimensional (3D) printing process and the precise controllability of the porosity, we showed that the printed samples exhibited a remarkably low thermal conductivity and durable mechanical strength. 
    more » « less
  2. Abstract

    The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.

     
    more » « less
  3. Ceramic materials provide outstanding chemical and structural stability at high temperatures and in hostile environments but are susceptible to catastrophic fracture that severely limits their applicability. Traditional approaches to partially overcome this limitation rely on activating toughening mechanisms during crack growth to postpone fracture. Here, we demonstrate a more potent toughening mechanism that involves an intriguing possibility of healing the cracks as they form, even at room temperature, in an atomically layered ternary carbide. Crystals of this class of ceramic materials readily fracture along weakly bonded crystallographic planes. However, the onset of an abstruse mode of deformation, referred to as kinking in these materials, induces large crystallographic rotations and plastic deformation that physically heal the cracks. This implies that the toughness of numerous other layered ceramic materials, whose broader applications have been limited by their susceptibility to catastrophic fracture, can also be enhanced by microstructural engineering to promote kinking and crack-healing. 
    more » « less
  4. Abstract

    Emerging transformable lattice structures provide promising paradigms to reversibly switch lattice configurations, thereby enabling their properties to be tuned on demand. The existing transformation mechanisms are limited to nonfracture deformation, such as origami, instability, shape memory, and liquid crystallinity. In this study, we present a class of transformable lattice structures enabled by fracture and shape-memory-assisted healing. The lattice structures are additively manufactured with a molecularly designed photopolymer capable of both fracture healing and shape memory. We show that 3D-architected lattice structures with various volume fractions can heal fractures and fully restore stiffness and strength over two to ten healing cycles. In addition, coupled with the shape-memory effect, the lattice structures can recover fracture-associated distortion and then heal fracture interfaces, thereby enabling healing of lattice wing damages, mode-I fractures, dent-induced crashes, and foreign-object impacts. Moreover, by harnessing the coupling of fracture and shape-memory-assisted healing, we demonstrate reversible configuration transformations of lattice structures to enable switching among property states of different stiffnesses, vibration transmittances, and acoustic absorptions. These healable, memorizable, and transformable lattice structures may find broad applications in next-generation aircraft panels, automobile frames, body armor, impact mitigators, vibration dampers, and acoustic modulators.

     
    more » « less
  5.  
    more » « less