skip to main content


Title: Vector-borne parasite invasion in communities across space and time
While vector-borne parasite transmission often operates via generalist-feeding vectors facilitating cross-species transmission in host communities, theory describing the relationship between host species diversity and parasite invasion in these systems is underdeveloped. Host community composition and abundance vary across space and time, generating opportunities for parasite invasion. To explore how host community variation can modify parasite invasion potential, we develop a model for vector-borne parasite transmission dynamics that includes a host community of arbitrary richness and species' abundance. To compare invasion potential across communities, we calculate the community basic reproductive ratio of the parasite. We compare communities comprising a set of host species to their subsets, which allows for flexible scenario building including the introduction of novel host species and species loss. We allow vector abundance to scale with, or be independent of, community size, capturing regulation by feeding opportunities and non-host effects such as limited oviposition sites. Motivated by equivocal data relating host species competency to abundance, we characterize plausible host communities via phenomenological relationships between host species abundance and competency. We identify an underappreciated mechanism whereby changes to communities simultaneously alter average competency and the vector to host ratio and demonstrate that the interaction can profoundly influence invasion potential.  more » « less
Award ID(s):
1754255
NSF-PAR ID:
10179896
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
286
Issue:
1917
ISSN:
0962-8452
Page Range / eLocation ID:
20192614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.

     
    more » « less
  2. Abstract

    Hosts and their parasites exist within complex ecological communities. However, the role that non‐focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the ‘diversity‐disease’ relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of ‘amplification’ versus ‘dilution’ effects.

    However, non‐focal species vary in their traits, densities and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm and dynamic species interactions may better advance our understanding of parasite transmission in complex communities.

    Using the concept of the parasite's basic reproductive ratio,R0, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites and non‐focal species modulate transmission and provide examples from relevant literature.

    By focusing on the mechanism by which non‐focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, better predict community traits correlated with disease dilution or amplification, and gauge the feasibility of biocontrol for parasites of conservation, agricultural or human health concern.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology. 
    more » « less
  4. Abstract

    Theoretical models suggest that infectious diseases could play a substantial role in determining the spatial extent of host species, but few studies have collected the empirical data required to test this hypothesis. Pathogens that sterilize their hosts or spread through frequency‐dependent transmission could have especially strong effects on the limits of species' distributions because diseased hosts that are sterilized but not killed may continue to produce infectious stages and frequency‐dependent transmission mechanisms are effective even at very low population densities. We collected spatial pathogen prevalence data and population abundance data for alpine carnations infected by the sterilizing pathogenMicrobotryum dianthorum, a parasite that is spread through both frequency‐dependent (vector‐borne) and density‐dependent (aerial spore transmission) mechanisms. Our 13‐year study reveals rapid declines in population abundance without a compensatory decrease in pathogen prevalence. We apply a stochastic, spatial model of parasite spread that accommodates spatial habitat heterogeneity to investigate how the population dynamics depend on multimodal (frequency‐dependent and density‐dependent) transmission. We found that the observed rate of population decline could plausibly be explained by multimodal transmission, but is unlikely to be explained by either frequency‐dependent or density‐dependent mechanisms alone. Multimodal pathogen transmission rates high enough to explain the observed decline predicted that eventual local extinction of the host species is highly likely. Our results add to a growing body of literature showing how multimodal transmission can constrain species distributions in nature.

     
    more » « less
  5. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less