skip to main content


Title: Toeplitz Inverse Covariance Based Robust Speaker Clustering for Naturalistic Audio Streams
Speaker diarization determines who spoke and when? in an audio stream. In this study, we propose a model-based approach for robust speaker clustering using i-vectors. The i-vectors extracted from different segments of same speaker are correlated. We model this correlation with a Markov Random Field (MRF) network. Leveraging the advancements in MRF modeling, we used Toeplitz Inverse Covariance (TIC) matrix to represent the MRF correlation network for each speaker. This approaches captures the sequential structure of i-vectors (or equivalent speaker turns) belonging to same speaker in an audio stream. A variant of standard Expectation Maximization (EM) algorithm is adopted for deriving closed-form solution using dynamic programming (DP) and the alternating direction method of multiplier (ADMM). Our diarization system has four steps: (1) ground-truth segmentation; (2) i-vector extraction; (3) post-processing (mean subtraction, principal component analysis, and length-normalization) ; and (4) proposed speaker clustering. We employ cosine K-means and movMF speaker clustering as baseline approaches. Our evaluation data is derived from: (i) CRSS-PLTL corpus, and (ii) two meetings subset of the AMI corpus. Relative reduction in diarization error rate (DER) for CRSS-PLTL corpus is 43.22% using the proposed advancements as compared to baseline. For AMI meetings IS1000a and IS1003b, relative DER reduction is 29.37% and 9.21%, respectively.  more » « less
Award ID(s):
2016725
NSF-PAR ID:
10180045
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ISCA INTERSPEECH-2019
Page Range / eLocation ID:
416 to 420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION: CRSS-UTDallas initiated and oversaw the efforts to recover APOLLO mission communications by re-engineering the NASA SoundScriber playback system, and digitizing 30-channel analog audio tapes – with the entire Apollo-11, Apollo-13, and Gemini-8 missions during 2011-17 [1,6]. This vast data resource was made publicly available along with supplemental speech & language technologies meta-data based on CRSS pipeline diarization transcripts and conversational speaker time-stamps for Apollo team at NASA Mission Control Center, [2,4]. In 2021, renewed efforts over the past year have resulted in the digitization of an additional +50,000hrs of audio from Apollo 7,8,9,10,12 missions, and remaining A-13 tapes. Cumulative digitization efforts have enabled the development of the largest publicly available speech data resource with unprompted, real conversations recorded in naturalistic environments. Deployment of this massive corpus has inspired multiple collaborative initiatives such as Web resources ExploreApollo (https://app.exploreapollo.org) LanguageARC (https://languagearc.com/projects/21) [3]. ExploreApollo.org serves as the visualization and play-back tool, and LanguageARC the crowd source subject content tagging resource developed by UG/Grad. Students, intended as an educational resource for k-12 students, and STEM/Apollo enthusiasts. Significant algorithmic advancements have included advanced deep learning models that are now able to improve automatic transcript generation quality, and even extract high level knowledge such as ID labels of topics being spoken across different mission stages. Efficient transcript generation and topic extraction tools for this naturalistic audio have wide applications including content archival and retrieval, speaker indexing, education, group dynamics and team cohesion analysis. Some of these applications have been deployed in our online portals to provide a more immersive experience for students and researchers. Continued worldwide outreach in the form of the Fearless Steps Challenges has proven successful with the most recent Phase-4 of the Challenge series. This challenge has motivated research in low level tasks such as speaker diarization and high level tasks like topic identification. IMPACT: Distribution and visualization of the Apollo audio corpus through the above mentioned online portals and Fearless Steps Challenges have produced significant impact as a STEM education resource for K-12 students as well as a SLT development resource with real-world applications for research organizations globally. The speech technologies developed by CRSS-UTDallas using the Fearless Steps Apollo corpus have improved previous benchmarks on multiple tasks [1, 5]. The continued initiative will extend the current digitization efforts to include over 150,000 hours of audio recorded during all Apollo missions. ILLUSTRATION: We will demonstrate WebExploreApollo and LanguageARC online portals with newly digitized audio playback in addition to improved SLT baseline systems, the results from ASR and Topic Identification systems which will include research performed on the corpus conversational. Performance analysis visualizations will also be illustrated. We will also display results from the past challenges and their state-of-the-art system improvements. 
    more » « less
  2. null (Ed.)
    The Fearless Steps Initiative by UTDallas-CRSS led to the digitization, recovery, and diarization of 19,000 hours of original analog audio data, as well as the development of algorithms to extract meaningful information from this multi-channel naturalistic data resource. The 2020 FEARLESS STEPS (FS-2) Challenge is the second annual challenge held for the Speech and Language Technology community to motivate supervised learning algorithm development for multi-party and multi-stream naturalistic audio. In this paper, we present an overview of the challenge sub-tasks, data, performance metrics, and lessons learned from Phase-2 of the Fearless Steps Challenge (FS-2). We present advancements made in FS-2 through extensive community outreach and feedback. We describe innovations in the challenge corpus development, and present revised baseline results. We finally discuss the challenge outcome and general trends in system development across both phases (Phase FS-1 Unsupervised, and Phase FS-2 Supervised) of the challenge, and its continuation into multi-channel challenge tasks for the upcoming Fearless Steps Challenge Phase-3. 
    more » « less
  3. Fearless Steps (FS) APOLLO is a + 50,000 hr audio resource established by CRSS-UTDallas capturing all communications between NASA-MCC personnel, backroom staff, and Astronauts across manned Apollo Missions. Such a massive audio resource without metadata/unlabeled corpus provides limited benefit for communities outside Speech-and-Language Technology (SLT). Supplementing this audio with rich metadata developed using robust automated mechanisms to transcribe and highlight naturalistic communications can facilitate open research opportunities for SLT, speech sciences, education, and historical archival communities. In this study, we focus on customizing keyword spotting (KWS) and topic detection systems as an initial step towards conversational understanding. Extensive research in automatic speech recognition (ASR), speech activity, and speaker diarization using manually transcribed 125 h FS Challenge corpus has demonstrated the need for robust domain-specific model development. A major challenge in training KWS systems and topic detection models is the availability of word-level annotations. Forced alignment schemes evaluated using state-of-the-art ASR show significant degradation in segmentation performance. This study explores challenges in extracting accurate keyword segments using existing sentence-level transcriptions and proposes domain-specific KWS-based solutions to detect conversational topics in audio streams. 
    more » « less
  4. In this study, we propose to investigate triplet loss for the purpose of an alternative feature representation for ASR. We consider a general non-semantic speech representation, which is trained with a self-supervised criteria based on triplet loss called TRILL, for acoustic modeling to represent the acoustic characteristics of each audio. This strategy is then applied to the CHiME-4 corpus and CRSS-UTDallas Fearless Steps Corpus, with emphasis on the 100-hour challenge corpus which consists of 5 selected NASA Apollo-11 channels. An analysis of the extracted embeddings provides the foundation needed to characterize training utterances into distinct groups based on acoustic distinguishing properties. Moreover, we also demonstrate that triplet-loss based embedding performs better than i-Vector in acoustic modeling, confirming that the triplet loss is more effective than a speaker feature. With additional techniques such as pronunciation and silence probability modeling, plus multi-style training, we achieve a +5.42% and +3.18% relative WER improvement for the development and evaluation sets of the Fearless Steps Corpus. To explore generalization, we further test the same technique on the 1 channel track of CHiME-4 and observe a +11.90% relative WER improvement for real test data. 
    more » « less
  5. Recent developments in deep learning strategies have revolutionized Speech and Language Technologies(SLT). Deep learning models often rely on massive naturalistic datasets to produce the necessary complexity required for generating superior performance. However, most massive SLT datasets are not publicly available, limiting the potential for academic research. Through this work, we showcase the CRSS-UTDallas led efforts to recover, digitize, and openly distribute over 50,000 hrs of speech data recorded during the 12 NASA Apollo manned missions, and outline our continuing efforts to digitize and create meta-data through diarization of the remaining 100,000hrs. We present novel deep learning-based speech processing solutions developed to extract high-level information from this massive dataset. Fearless-Steps APOLLO resource is a 50,000 hrs audio collection from 30-track analog tapes originally used to document Apollo missions 1,7,8,10,11,&13. A customized tape read-head developed to digitize all 30 channels simultaneously has been deployed to expedite digitization of remaining mission tapes. Diarized transcripts for these unlabeled audio communications have also been generated to facilitate open research from speech sciences, historical archives, education, and speech technology communities. Robust technologies developed to generate human-readable transcripts include: (i) speaker diarization, (ii) speaker tracking, and (iii) text output from speech recognition systems. 
    more » « less