skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinspired cellular sheath-core electrospun non-woven mesh
Fibers are valuable to biomedical applications. Used as sutures or meshes, there is an increased dual need to provide functionality such as drug delivery. Porosity represents a high surface area to volume architecture. Coaxial fibers with porous and non-porous layers offer a new design framework for fiber design that can resolve dual needs of mechanical robustness with transport phenomena. Using preferential solubility of a polymer in supercritical CO2, we develop a new architecture using biocompatible polymers based on porous core-sheath fiber fabrication technique. Polycaprolactone was selected as the CO2 miscible phase and Poly(butyrate adipate terephthalate)(PBAT) as the immiscible phase. The mechanical performance of the fibers was investigated using quasi static and dynamic loading. SEM images indicate no physical detachment of the two polymer surface after CO2 exposure indicating a successful amalgamation of polymers at the boundary of core and sheath. PCL as a sheath and as a core showed an increase of 650% and 468% in tensile strength compared to pristine PCL and PBAT. Introduction of porosity on the surface of coaxial fiber fPCL(cPBAT) further enhanced the yield strength increases by 40%. Dynamic mechanical analysis was used to analyze the viscoelastic properties of the fibers. The storage and loss modulus for coaxial fibers shows superior modulus throughout the glassy, glass transition and rubbery region as compared to the pristine PCL and PBAT, showing enhancement in both the elastic and viscous response of the material. The results indicate a new approach that is free of volatile organic solvents to manipulate the architecture of the cross-section of the electrospun fiber and tailor mechanical properties to the required application.  more » « less
Award ID(s):
1728096
PAR ID:
10180225
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Emergent materials
Volume:
2
ISSN:
2522-574X
Page Range / eLocation ID:
127-140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With the increasing interest in biopolymer nanofibers for diverse applications, the characterization of these materials in the physiological environment has become of equal interest and importance. This study performs first‐time simulated body fluid (SBF) degradation and tensile mechanical analyses of blended fish gelatin (FGEL) and polycaprolactone (PCL) nanofibrous meshes prepared by a high‐throughput free‐surface alternating field electrospinning. The thermally crosslinked FGEL/PCL nanofibrous materials with 84–96% porosity and up to 60 wt% PCL fraction demonstrate mass retention up to 88.4% after 14 days in SBF. The trends in the PCL crystallinity and FGEL secondary structure modification during the SBF degradation are analyzed by Fourier transform infrared spectroscopy. Tensile tests of such porous, 0.1–2.2 mm thick FGEL/PCL nanofibrous meshes in SBF reveal the ultimate tensile strength, Young's modulus, and elongation at break within the ranges of 60–105 kPa, 0.3–1.6 MPa, and 20–70%, respectively, depending on the FGEL/PCL mass ratio. The results demonstrate that FGEL/PCL nanofibrous materials prepared from poorly miscible FGEL and PCL can be suitable for selected biomedical applications such as scaffolds for skin, cranial cruciate ligament, articular cartilage, or vascular tissue repair. 
    more » « less
  2. Quantifying disorder in physical systems can provide unique opportunities to engineer-specific properties. Here, we apply a methodology based on the approach pioneered by Bragg and Williams for metal alloys to quantify the disorder characterizing polymer fibers including polyaniline (PANI), polyaniline-polycaprolactone (PANI-PCL), and polyvinylidene difluoride (PVDF). Both PANI and PVDF possess electrical properties such as conductivity and piezoelectric response that find a wide range of applications in energy storage and tissue engineering. On the other hand, the mechanical properties of polymer fibers can be tuned by varying the concentration of PANI and PCL during synthesis. Here, we demonstrate that it is possible to control the amount of disorder characterizing a fiber, which provides a route to engineering desired values for specific material properties. The resulting measure of disorder is shown to have a direct relationship to Young’s modulus, band gap, and specific capacitance values. 
    more » « less
  3. Abstract Tissue engineering is a pivotal research domain, central to advancing biomedical manufacturing processes with the aim of fabricating functional artificial organs and tissues. Addressing the pressing concern of organ shortages and myriad medical challenges necessitates innovative manufacturing techniques. Hydrogel scaffolds, due to their biocompatibility and extracellular matrix-mimicking porous structure, have emerged as prime candidates in this arena. Moreover, their hygroscopic properties and tunable mechanical characteristics render them suitable for various tissue engineering applications. Despite their promising attributes, a significant manufacturing challenge persists: the optimization of cellular growth within the confines of hydrogel scaffolds. Effective vascularization, essential for optimal cellular nutrient and oxygen supply, remains elusive. Our previous manufacturing research tackled this, introducing a novel hybrid Bio-Fabrication technique. This technique integrated coaxial electrospinning and extrusion-based bioprinting methodologies, yielding hydrogel scaffolds fortified with microtubes. These strategically embedded microtubes, modeled after capillary structures, function as microchannel diffusion conduits, enhancing cellular viability within the hydrogel matrix. A core aspect of scaffold manufacturing is ensuring the stability of its 3D architecture, especially post-swelling. Preliminary hypotheses suggest a gamut of factors — including microtube shape, size, orientation, alignment, and density — play determinant roles in shaping the scaffold’s mechanical attributes. This research rigorously examines the mechanical evolution of hydrogel scaffolds when supplemented with aligned electrospun microtubes across a spectrum of densities. A blend of sodium alginate (SA) and gelatin was selected for the hydrogel matrix due to their inherent biocompatibility and favorable mechanical properties. Different concentrations were prepared to assess the optimal mixture for mechanical stability. A co-axial electrospinning setup was employed where polycaprolactone (PCL) was used as the sheath material and polyethylene oxide (PEO) functioned as the core. This dual material approach was intended to leverage the structural rigidity of PCL with the biodegradability of PEO. The spinning parameters, including voltage, flow rate, and tip-to-collector distance, were meticulously adjusted to produce aligned microtubes of varied densities and diameters. Once the microtubes were synthesized, they were layered within the hydrogel constructs. The layering process involved depositing a hydrogel layer, positioning the microtubes, and then sealing with another hydrogel layer. The entire structure was then solidified using calcium chloride, resulting in a robust, multi-layered composite. Post-fabrication, the hydrogel scaffolds underwent mechanical evaluations. Compression tests were employed to measure the compressive modulus. Tensile tests were conducted to determine ultimate tensile strength. These tests were crucial to understanding the impact of microtube density on the overall mechanical properties of the hydrogel scaffolds. The high-density group, while showing improved mechanical properties over the control group, did not surpass the low-density group, suggesting a possible saturation point. In conclusion, our research methodically explored the influence of microtube density on the mechanical and structural attributes of hydrogel scaffolds. The manufacturing insights gleaned hold substantive implications, promising to propel the field of tissue engineering and drive transformative advancements in biomedical manufacturing. 
    more » « less
  4. Abstract Poly(ε-caprolactone) (PCL) is one of the leading biocompatible and biodegradable polymers. However, the mechanical property of PCL is relatively poor as compared with that of polyolefins, which has limited the active applications of PCL as an industrial material. In this study, to enhance the mechanical property of PCL, cellulose nanofibers (C-NF) with high mechanical property, were employed as reinforcement materials for PCL. The C-NF were fabricated via the electrospinning of cellulose acetate (CA) followed by the subsequent saponification of the CA nanofibers. For the enhancement of the mechanical property of the PCL composite, the compatibility of C-NF and PCL was investigated: the surface modification of the C-NF was introduced by the ring-opening polymerization of the ε-caprolactone on the C-NF surface (C-NF-g-PCL). The polymerization was confirmed by the Fourier transform infrared (FTIR) spectroscopy. Tensile testing was performed to examine the mechanical properties of the C-NF/PCL and the C-NF-g-PCL/PCL. At the fiber concentration of 10 wt%, the Young’s modulus of PCL compounded with neat C-NF increased by 85% as compared with that of pure PCL, while, compounded with C-NF-g-PCL, the increase was 114%. The fracture surface of the composites was analyzed by scanning electron microscopy (SEM). From the SEM images, it was confirmed that the interfacial compatibility between PCL and C-NF was improved by the surface modification. The results demonstrated that the effective surface modification of C-NF contributed to the enhancement of the mechanical property of PCL. 
    more » « less
  5. ABSTRACT Composite nanostructured foams consisting of a metallic shell deposited on a polymeric core were formed by plating copper via electroless deposition on electrospun polycaprolactone (PCL) fiber mats. The final structure consisted of 1000-nm scale PCL fibers coated with 100s of nm of copper, leading to final core-shell thicknesses on the order of 1000-3000 nm. The resulting open cell, core-shell foams had relative densities between 4 and 15 %. By controlling the composition of the adjuncts in the plating bath, particularly the composition of formaldehyde, the relative thickness of copper coating as the fiber diameter could be controlled. As-spun PCL mats had a nominal compressive modulus on the order of 0.1 MPa; adding a uniform metallic shell increased the modulus up to 2 MPa for sub-10 % relative density foams. A computational materials science analysis using density functional theory was used to explore the effects pre-treatment with Pd may have on the density of nuclei formed during electroless plating. 
    more » « less