skip to main content


Title: Unit Selection Based on Counterfactual Logic

The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, which is defined in counterfactual terms. A typical example is that of selecting individuals who would respond one way if encouraged and a different way if not encouraged. Unlike previous works on this problem, which rely on ad-hoc heuristics, we approach this problem formally, using counterfactual logic, to properly capture the nature of the desired behavior. This formalism enables us to derive an informative selection criterion which integrates experimental and observational data. We demonstrate the superiority of this criterion over A/B-test-based approaches.

 
more » « less
Award ID(s):
1704932
NSF-PAR ID:
10180278
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
1793 to 1799
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vasant Honavar and Matthijs Spaan (Ed.)
    The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, for example, selecting individuals who would respond one way if encouraged and a different way if not encouraged. Using a combination of experimental and observational data, Li and Pearl derived tight bounds on the “benefit function” - the payoff/cost associated with selecting an individual with given characteristics. This paper shows that these bounds can be narrowed significantly (enough to change decisions) when structural information is available in the form of a causal model. We address the problem of estimating the benefit function using observational and experimental data when specific graphical criteria are assumed to hold. 
    more » « less
  2. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e., preferences over the different resources). A standard notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers the agent’s own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known up front, the desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that, in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention in that any algorithm achieving additive counterfactual envy-freeness up to a factor of L T necessarily suffers an efficiency loss of at least [Formula: see text]. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness–efficiency point on this frontier. Our results provide guarantees for fair online resource allocation with high probability for multiple resource and multiple type settings. In simulation results, our algorithm provides allocations close to the optimal fair solution in hindsight, motivating its use in practical applications as the algorithm is able to adapt to any desired fairness efficiency trade-off. Funding: This work was supported by the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2397 . 
    more » « less
  3. Light microscopy provides a window into another world that is not visible to the unaided eye. Because of this and its importance in biological discoveries, the light microscope is an essential tool for scientific studies. It can also be used with a variety of easily obtained specimens to provide dramatic demonstrations of previously unknown features of common plants and animals. Thus, one way to interest young people in science is to start with an introduction to light microscopy. This is an especially effective strategy for individuals who attend less advantaged or under-resourced schools, as they may not have been previously exposed to scientific concepts in their classes. However, introducing light microscopy lessons in the classroom can be challenging because of the high cost of light microscopes, even those that are relatively basic, in addition to their usual large size. Efforts are underway by our laboratory in collaboration with the Biophysical Society (BPS) to introduce young people to light microscopy using small, easy-to-assemble wooden microscopes developed by Echo Laboratories. The microscopes are available online as low-cost kits ($10 each with shipping), each consisting of 19 parts printed onto an 81⁄2 x 11 inch sheet of light-weight wood (Fig. 1). After punching out the pieces, they can be assembled into a microscope with a moveable stage and a low-power lens, also provided in the kit (Fig. 2). Photos taken with a cell phone through the microscope lens can give magnifications of ~16-18x, or higher. At these magnifications, features of specimens that are not visible to the unaided eye can be easily observed, e.g., small hairs on the margins of leaves or lichens [1]. As a member of the BPS Education Committee, one of us (SAE) wrote a Lesson Plan on Light Microscopy specifically for use with the wooden microscopes. SAE was also able to obtain a gift of 500 wooden microscope kits for the BPS from Echo Laboratories and Chroma Technology Corp in 2016. The wooden microscope kits, together with the lesson plan, have provided the materials for our present outreach efforts. Rather than giving out the wooden microscope kits to individuals, the BPS asked the Education Committee to maximize the impact of the gift by distributing the microscopes with the Lesson Plan on Light Microscopy to teachers, e.g., through teachers’ workshops or outreach sessions. This strategy was devised to enable the Society to reach a larger number of young people than by giving the microscopes to individuals. The Education Committee first evaluated the microscopes as a tool to introduce students to scientific concepts by providing microscopes to a BPS member at the National University of Colombia who conducted a workshop on Sept 19-24, 2016 in Tumaco, Columbia. During the workshop, which involved 120 high school girls and 80 minority students, including Afro-Colombian and older students, the students built the wooden microscopes and examined specimens, and compared the microscopes to a conventional light microscope. Assembling the wooden microscopes was found to be a useful procedure that was similar to a scientific protocol, and encouraged young girls and older students to participate in science. This was especially promising in Colombia, where there are few women in science and little effort to increase women in STEM fields. Another area of outreach emerged recently when one of us, USP, an undergraduate student at Duke University, who was taught by SAE how to assemble the wooden microscopes and how to use the lesson plan, took three wooden microscopes on a visit to her family in Bangalore, India in summer 2018 [2]. There she organized and led three sessions in state run, under-resourced government schools, involving classes of ~25-40 students each. This was very successful – the students enjoyed learning about the microscopes and building them, and the science teachers were interested in expanding the sessions to other government schools. USP taught the teachers how to assemble and use the microscopes and gave the teachers the microscopes and lesson plan, which is also available to the public at the BPS web site. She also met with a founder of the organization, Whitefield Rising, which is working to improve teaching in government schools, and taught her and several volunteers how to assemble the microscopes and conduct the sessions. The Whitefield Rising members have been able to conduct nine further sessions in Bangalore over the past ~18 months (Fig. 3), using microscope kits provided to them by the BPS. USP has continued to work with members of the Whitefield Rising group during her summer and winter breaks on visits to Bangalore. Recently she has been working with another volunteer group that has expanded the outreach efforts to New Delhi. The light microscopy outreach that our laboratory is conducting in India in collaboration with the BPS is having a positive impact because we have been able to develop a partnership with volunteers in Bangalore and New Delhi. The overall goal is to enhance science education globally, especially in less advantaged schools, by providing a low-cost microscope that can be used to introduce students to scientific concepts. 
    more » « less
  4. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A standard notion of 'fairness' in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. For divisible resources, when the number of individuals of each type are known upfront, the above desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously.We show that in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention, in that any algorithm achieving additive counterfactual envy-freeness up to a factor of LT necessarily suffers a efficiency loss of at least 1 / LT. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness-efficiency point on this frontier. 
    more » « less
  5. Abstract

    The aim of this paper is to provide some new criteria for the determinacy problem of the Stieltjes moment problem. We first give a Tauberian type criterion for moment indeterminacy that is expressed purely in terms of the asymptotic behavior of the moment sequence (and its extension to imaginary lines). Under an additional assumption this provides a converse to the classical Carleman's criterion, thus yielding an equivalent condition for moment determinacy. We also provide a criterion for moment determinacy that only involves the large asymptotic behavior of the distribution (or of the density if it exists), which can be thought of as an Abelian counterpart to the previous Tauberian type result. This latter criterion generalizes Hardy's condition for determinacy, and under some further assumptions yields a converse to the Pedersen's refinement of the celebrated Krein's theorem. The proofs utilize non‐classical Tauberian results for moment sequences that are analogues to the ones developed in [8] and [3] for the bi‐lateral Laplace transforms in the context of asymptotically parabolic functions. We illustrate our results by studying the time‐dependent moment problem for the law of log‐Lévy processes viewed as a generalization of the log‐normal distribution. Along the way, we derive the large asymptotic behavior of the density of spectrally‐negative Lévy processes having a Gaussian component, which may be of independent interest.

     
    more » « less