Hydrogen-rich cation radicals (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ represent oligonucleotide models of charged hydrogen atom adducts to DNA. These tetranucleotide cation radicals were generated in the gas phase by one-electron reduction of the respective (GATT + 2H) 2+ and (AGTT + 2H) 2+ dications in which the charging protons were placed on the guanine and adenine nucleobases. We used wavelength-dependent UV/Vis photodissociation in the valence-electron excitation region of 210–700 nm to produce action spectra of (GATT + 2H) + ˙ and (AGTT + 2H) + ˙ that showed radical-associated absorption bands in the near-UV (330 nm) and visible (400–440 nm) regions. Born–Oppenheimer molecular dynamics and density-functional theory calculations were used to obtain and rank by energy multiple (GATT + 2H) dication and cation-radical structures. Time-dependent density functional theory (TD-DFT) calculations of excited-state energies and electronic transitions in (GATT + 2H) + ˙ were augmented by vibronic spectra calculations at 310 K for selected low-energy cation radicals to provide a match with the action spectrum. The stable product of one-electron reduction was identified as having a 7,8-dihydroguanine cation radical moiety, formed by intramolecular hydrogen atom migration from adenine N-1–H. The hydrogen migration was calculated to have a transition state with a low activation energy, E a = 96.5 kJ mol −1 , and positive activation entropy, Δ S ‡ = 75 J mol −1 K −1 . This allowed for a fast isomerization of the primary reduction products on the ion-trap time scale of 150 ms that was substantially accelerated by highly exothermic electron transfer.
more »
« less
UV-Vis Photodissociation Action Spectroscopy Reveals Cytosine-Guanine Hydrogen Transfer in DNA Tetranucleotide Cation Radicals upon One-Electron Transfer
ABSTRACT: We report the generation and spectroscopic study of hydrogen-rich DNA tetranucleotide cation radicals (GATC+2H)+• and (AGTC+2H)+•. The radicals were generated in the gas phase by one-electron reduction of the respective dications (GATC +2H)2+ and (AGTC+2H)2+ and characterized by collision-induced dissociation and photodissociation tandem mass spectrometry and UV−vis photodissociation action spectroscopy. Among several absorption bands observed for (GATC+2H)+•, the bands at 340 and 450 nm were assigned to radical chromophores. Timedependent density functional theory calculations including vibronic transitions in the visible region of the spectrum were used to provide theoretical absorption spectra of several low-energy tetranucleotide tautomers having cytosine-, adenine-, and thymine- based radical chromophores that did not match the experimental spectrum. Instead, the calculations indicated the formation of a new isomer with the 7,8-H-dihydroguanine cation radical moiety. The isomerization involved hydrogen migration from the cytosine N-3−H radical to the C-8 position in N-7-protonated guanine that was calculated to be 87 kJ mol−1 exothermic and had a low-energy transition state. Although the hydrogen migration was facilitated by the spatial proximity of the guanine and cytosine bases in the low-energy (GATC+2H)+• intermediate formed by electron transfer, the reaction was calculated to have a large negative activation entropy. Rice−Ramsperger−Kassel−Marcus (RRKM) and transition state theory kinetic analysis indicated that the isomerization occurred rapidly in hot cation radicals produced by electron transfer with the population-weighed rate constant of k = 8.9 × 103 s−1. The isomerization was calculated to be too slow to proceed on the experimental time scale in thermal cation radicals at 310 K.
more »
« less
- Award ID(s):
- 1661815
- PAR ID:
- 10180464
- Date Published:
- Journal Name:
- The journal of physical chemistry
- Volume:
- 124
- Issue:
- 17
- ISSN:
- 1520-5207
- Page Range / eLocation ID:
- 3505-3517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Superfluid helium nanodroplets are unique nanomatrices for the isolation and study of transient molecular species, such as radicals, carbenes, and ions. In this work, isomers of C3H4+ were produced upon electron ionization of propyne and allene molecules and interrogated via infrared spectroscopy inside He nanodroplet matrices. It was found that the spectrum of C3H4+ has at least three distinct groups of bands. The relative intensities of the bands depend on the precursor employed and its pickup pressure, which indicates the presence of at least three different isomers. Two isomers were identified as allene and propyne radical cations. The third isomer, which has several new bands in the range of 3100–3200 cm−1, may be the elusive vinylmethylene H2C=CH–CH+ radical cation. The observed bands for the allene and propyne cations are in good agreement with the results of density functional theory calculations. However, there is only moderate agreement between the new bands and the theoretically calculated vinylmethylene spectrum, which indicates more work is necessary to unambiguously assign it.more » « less
-
null (Ed.)A guided-ion beam tandem mass spectrometric study was performed on collision-induced dissociation (CID) of a protonated 9-methylguanine–1-methylcytosine Watson–Crick base pair (designated as WC-[9MG·1MC + H] + ), from which dissociation pathways and dissociation energies were determined. Electronic structure calculations at the DFT, RI-MP2 and DLPNO-CCSD(T) levels of theory were used to identify product structures and delineate reaction mechanisms. Intra-base-pair proton transfer (PT) of WC-[9MG·1MC + H] + results in conventional base-pair conformations that consist of hydrogen-bonded [9MG + H] + and 1MC and proton-transferred conformations that are formed by PT from the N1 of [9MG + H] + to the N3′ of 1MC. Two types of conformers were distinguished by CID in which the conventional conformers produced [9MG + H] + product ions whereas the proton-transferred conformers produced [1MC + H] + . The conventional conformers have a higher population (99.8%) and lower dissociation energy than the proton-transferred counterparts. However, in contrast to what was expected from the statistical dissociation of the equilibrium base-pair conformational ensemble, the CID product ions of WC-[9MG·1MC + H] + were dominated by [1MC + H] + rather than [9MG + H] + . This finding, alongside the non-statistical CID reported for deprotonated guanine–cytosine (Lu et al. ; PCCP , 2016, 18 , 32222) and guanine–cytosine radical cation (Sun et al. ; PCCP , 2020, 22 , 14875), reinforces that non-statistical dissociation is a distinctive feature of singly-charged Watson–Crick guanine–cytosine base pairs. It implies that intra-base-pair PT facilitates the formation of proton-transferred conformers in these systems and the ensuing conformers have loose transition states for dissociation. The monohydrate of WC-[9MG·1MC + H] + preserves non-statistical CID kinetics and introduces collision-induced methanol elimination via the reaction of the water ligand with a methyl group.more » « less
-
null (Ed.)Of particular interest in radiation-induced charge transfer processes in DNA is the extent of hole localization immediately after ionization and subsequent relaxation. To address this, we considered double stranded oligomers containing guanine (G) and 8-oxoguanine (8OG), i.e. , ds(5′-GGG-3′) and ds(5′-G8OGG-3′) in B-DNA conformation. Using DFT, we calculated a variety of properties, viz. , vertical and adiabatic ionization potentials, spin density distributions in oxidized stacks, solvent and solute reorganization energies and one-electron oxidation potential ( E 0 ) in the aqueous phase. Calculations for the vertical state of the -GGG- cation radical showed that the spin was found mainly (67%) on the middle G. However, upon relaxation to the adiabatic -GGG- cation radical, the spin localized (96%) on the 5′-G, as observed in experiments. Hole localizations on the middle G and 3′-G were higher in energy by 0.5 kcal mol −1 and 0.4 kcal mol −1 , respectively, than that of 5′-G. In the -G8OGG- cation radical, the spin localized only on the 8OG in both vertical and adiabatic states. The calculated vertical ionization potentials of -GGG- and -G8OGG- stacks were found to be lower than that of the vertical ionization potential of a single G in DNA. The calculated E 0 values of -GGG- and -G8OGG- stacks are 1.15 and 0.90 V, respectively, which owing to stacking effects are substantially lower than the corresponding experimental E 0 values of their monomers (1.49 and 1.18 V, respectively). SOMO to HOMO level switching is observed in these oxidized stacks. Consequently, our calculations predict that local double oxidations in DNA will form triplet diradical states, which are especially significant for high LET radiations.more » « less
-
Abstract This manuscript describes the synthesis and characterization of guanine and cytosine‐containing supramolecular copolymers, which are inspired from the guanine and cytosine nucleobase pair in deoxyribonucleic acid. Regioselective Michael‐addition allowed the efficient installation of the nucleobases on acrylate‐containing monomers, which enabled the preparation of a series of nucleobase‐functionalized acrylate andn‐butyl acrylate copolymers using conventional free radical copolymerization. Guanine‐containing copolymers exhibited superior thermal properties, thermomechanical performance, and more defined morphological structure than cytosine‐containing copolymer analogs due to the relatively strong guanine self‐association, thus expanding the potential applications for mechanically reinforced polymeric networks. Blending guanine‐ and cytosine‐containing copolymers formed a supramolecular structure through multiple hydrogen bonding between guanine and cytosine units. The supramolecular blend exhibited intermediate thermomechanical and morphological properties, which suggested that guanine and cytosine units were not fully associated in the random copolymer composition. This work provides valuable fundamental understanding of structure–property‐morphology relationships in acrylic copolymers with the presence of guanine‐cytosine self‐ and complementary interactions, suggesting new understanding in supramolecular design for enhanced mechanical and morphological properties.more » « less