skip to main content

Title: Measurements of linear polarization of satellite transitions from Li- and Be-like Ar ions
Non-thermal electron distributions, such as beams of electrons, are found in many laboratory and astrophysical plasma sources and can produce anisotropic and polarized emission. Theories used to model the emission require sublevel specific analysis, which can be difficult to verify experimentally. Using two polarization-sensitive Johann-type crystal spectrometers at the National Institute of Standards and Technology (NIST) electron beam ion trap facility, we measured the linear polarization of well-known dielectronic recombination satellite transitions from Li-like Ar ions and two blended features from Be-like ions. The spectrometers observed the plasma at 90◦ relative to the electron beam propagation direction, and the crystal dispersion planes were oriented perpendicular relative to each other to allow for differing polarization sensitivities. Measurements were taken near the resonance energies of each line and compared with theoretical predictions based on relativistic magnetic sublevel atomic kinetics using the density-matrix theory. Most of the predictions are in excellent agreement with measured values.
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of physics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. High-resolution x-ray spectra were recorded at the National Institute of Standards and Technology electron beam ion trap (EBIT) using two Johann-type crystal spectrometers, with their dispersion planes oriented parallel and perpendicular to the beam direction. The linear polarizations of the 1s2−1s2l transitions in He-like argon ions were determined from the measured spectra at electron beam energies of 3.87 and 7.91 keV. The theoretical analysis was performed using detailed collisional-radiative modeling of the non-Maxwellian EBIT plasma with the NOMAD code modified to account for magnetic sublevel atomic kinetics. Effects influencing the polarizations of the observed 1s2−1s2l lines were investigated, including radiativemore »cascades, the 1s2 1S0−1s2s 1S0 two-photon transition, and the charge exchange recombination of H-like argon ions. With these included, the measured polarizations of the resonance (1s2 1S0−1s2p 1P1), intercombination (1s2 1S0−1s2p 3P1), and forbidden lines (1s2 1S0−1s2s 3S1, 1s2 1S0−1s2p 3P2 ) were found to be in good agreement with the calculations.« less
  2. Radiative double-electron capture (RDEC), in which two-electron capture is accompanied by simultaneousemission of a single photon, was investigated for fully stripped and one-electron projectiles colliding withgaseous and thin-foil targets. RDEC can be considered the inverse of double photoionization by a single photon.For the gaseous targets, measurements were done for 2.11 MeV/uF9+and F8+ions interacting with N2and Ne,while for the thin-foil target the measurements were done for 2.11 MeV/uF9+and F8+and 2.19 MeV/uO8+andO7+ions striking thin C targets. Reports on this work were already published separately in shorter accounts by LaMantiaet al.[Phys. Rev. Lett.124, 133401 (2020)for the gas targets andPhys.Rev.A102, 060801(R) (2020)forthe thin-foil targets].more »The gas targets were studied under single-collision conditions, while the foil targets sufferedunavoidable multiple collisions. The measurements were carried out by detecting x-ray emission from the targetat 90◦to the beam direction in coincidence with outgoing ions undergoing double, single, and, in the caseof the foil targets, no charge change inside the target. Striking differences between the gaseous and foil targetswere found from these measurements, with RDEC for the gaseous targets occurring only in coincidence with q-2outgoing projectiles as expected, while RDEC for the foil targets was seen in each of the outgoing q-2, q-1, and nocharge-change states. The no charge-change result was totally unexpected. The cross sections for RDEC for thefully stripped ions on gas targets were found to be about six times larger than those for the one-electron projec-tiles. For the foil targets, the RDEC cross sections for the fully stripped and one-electron projectiles differ some-what from one another but not to the the extent they did for the gas targets. In this work the cross sections for allof the projectiles for the foil targets were adjusted due to the target contaminant background from potassium andcalcium atoms that existed in the spectra. Also, the cross sections for the incident one-electron projectiles weremodified due to a correction for the fraction of these ions that becomes fully stripped in passage through the foil.These differences are attributed to the effects of the multiple collisions that occur for the foil targets. The differ-ential cross sections at 90◦determined for each of the projectiles interacting with each of the targets are comparedwith each other and with the previous measurements. To the extent that the cross sections follow a sin2θdepen-dence, the total cross sections are compared with theoretical calculations [E. A. Mistonova and O. Yu. Andreev,Phys. Rev. A87, 034702 (2013)], for which the agreement is poor, with the measured cross section exceedingthe predicted ones by about an order of magnitude. Possible reasons for this discrepancy will be discussed.« less
  3. S100A12 or Calgranulin C is a homodimeric antimicrobial protein of the S100 family of EF-hand calcium-modulated proteins. S100A12 is involved in many diseases like inflammation, tumor invasion, cancer and neurological disorders like Alzheimer’s disease. The binding of transition metal ions to the protein is important as the sequestering of the metal ion induces conformational changes in the protein, inhibiting the growth of various pathogenic microorganisms. In this work, we probe the Cu(II) binding properties of Calgranulin C. We demonstrate that the two Cu(II) binding sites in Calgranulin C show different coordination environments in solution. Electron spin resonance (ESR) spectra ofmore »Cu(II)-bound protein clearly show two distinct components at higher Cu(II):protein ratios, which is indicative of the two different binding environments for the Cu(II) ions. The g|| and A|| values are also different for the two components, indicating that the number of directly coordinated nitrogens in each site differs. Furthermore, we perform Continuous Wave (CW)-titrations to obtain the binding affinity of the Ca(II)-loaded protein to Cu2+ ions. We observe a positive cooperativity in binding of the two Cu(II) ions. In order to further probe the Cu2+ coordination, we also perform Electron Spin Echo Envelope Modulation (ESEEM) experiment. We perform ESEEM at two different fields where one Cu(II) binding site dominates over the other. At both sites we see distinct signatures of Cu(II)-histidine coordination. However, we clearly see that the ESEEM spectra corresponding to the two Cu2+ binding sites are significantly different. There is clear change in the intensity of the double quantum (DQ) peak with respect to the nuclear quadrupole interaction (NQI) peak at the two different fields. Furthermore, ESEEM along with Hyperfine Sublevel Correlation (HYSCORE) show that only one of the two Cu(II) binding sites has backbone coordination, confirming our previous observation. Finally, we perform Double Electron Electron Resonance (DEER) spectroscopy to probe if the difference in binding environment is due to the Cu(II) binding to different sites in the protein. We obtain a distance distribution with a sharp peak at ~ 3 nm and a broad peak at ~ 4 nm. The shorter distance agrees with the Cu(II)-Cu(II) distance expected for a dimer from the crystal structure. The longer distance is consistent with the Cu(II)-Cu(II) distance when oligomerization occurs.« less
  4. Abstract With unprecedented angular resolution, the Event Horizon Telescope (EHT) has opened a new era of black hole studies. We have previously calculated the expected polarization images of M 87* with EHT observations in mind. There, we demonstrated that circular polarization (CP) images, as well as linear polarization (LP) maps, can convey quite useful information, such as the flow structure and magnetic field configuration around the black hole. In this paper, we make new predictions for the cases in which disk emission dominates over jet emission, bearing Sgr A* in mind. Here we set the proton-to-electron temperature ratio of the disk componentmore »to be Tp/Te ∼ 2 so as to suppress jet emission relative to emission from accretion flow. As a result, we obtain ring-like images and triple-forked images around the black hole for face-on and edge-on cases, respectively. We also find significant CP components in the images (≳10% in fraction), with both positive and negative signs, amplified through the Faraday conversion, not depending sensitively on the inclination angles. Furthermore, we find a “separatrix” in the CP images, across which the sign of CP is reversed and on which the LP flux is brightest, that can be attributed to the helical magnetic field structure in the disk. These results indicate that future full polarization EHT images are a quite useful tracer of the magnetic field structure. We also discuss to what extent we will be able to extract information regarding magnetic field configurations under the scattering in the interstellar plasma, in future EHT polarimetric observations of Sgr A*.« less
  5. The role of negative hydroxyl ions in liquid-phase plasma discharge formation is investigated using an inhouse modeling framework. Two tunneling sources for electrons are considered—tunneling ionization of water molecules and tunneling detachment of negative hydroxyl ions together with additional reaction steps. The simulations are conducted for a needle-like powered electrode with two different nanosecond rise time voltage profiles—a linear and an exponential rise. Both the profiles have a maximum voltage of 15 kV. The predictions show that the electron detachment, which has a much lower threshold energy requirement, provides a stream of electrons at low applied voltage during the initialmore »rise time. The electrical forces from the electron detachment process generate stronger compression but a weaker expansion regime in the liquid resulting in ∼40% increase in the density and only ∼1% decrease. The electron detachment tunneling process is found to be not limited by the electric field, but rather by the availability of negative hydroxyl ions in the system and ceases when these ions are depleted. The tunnel ionization of water molecules forms the electron wave at a higher applied voltage, but the resulting peak electron number density is typically six orders of magnitude larger than the detachment tunneling. The higher electron number density allows the recycling of depleted negative hydroxyl ions in the system and can reestablish tunneling detachment. In addition, the system experiences a larger variation in density; specifically, a decrease in density due to tunnel ionization. The prediction also shows that irrespective of the initial electron sources (i.e. tunnel ionization or tunnel detachment) the reduced electric field is not sufficient enough to allow electron impact ionization to be active and make a significant contribution. Path flux analysis is conducted to determine the kinetics responsible for the recycling of the negative hydroxyl ions.« less