skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alternative splicing of DSP1 enhances snRNA accumulation by promoting transcription termination and recycle of the processing complex
Small nuclear RNAs (snRNAs) are the basal components of the spliceosome and play crucial roles in splicing. Their biogenesis is spatiotemporally regulated. However, related mechanisms are still poorly understood. Defective in snRNA processing (DSP1) is an essential component of the DSP1 complex that catalyzes plant snRNA 3′-end maturation by cotranscriptional endonucleolytic cleavage of the primary snRNA transcripts (presnRNAs). Here, we show thatDSP1is subjected to alternative splicing in pollens and embryos, resulting in two splicing variants,DSP1α andDSP1β. Unlike DSP1α, DSP1β is not required for presnRNA 3′-end cleavage. Rather, it competes with DSP1α for the interaction with CPSF73-I, the catalytic subunit of the DSP1 complex, which promotes efficient release of CPSF73-I and the DNA-dependent RNA polymerease II (Pol II) from the 3′ end of snRNA loci thereby facilitates snRNA transcription termination, resulting in increased snRNA levels in pollens. Taken together, this study uncovers a mechanism that spatially regulates snRNA accumulation.  more » « less
Award ID(s):
1818082
PAR ID:
10180582
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
33
ISSN:
0027-8424
Page Range / eLocation ID:
p. 20325-20333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. mall nuclear RNAs (snRNAs) play essential roles in spliceosome assembly and splicing. Most snRNAs are transcribed by the DNA-dependent RNA polymerase II (Pol II) and require 3' end endonucleolytic cleavage. We have previously shown that the Arabidopsis (Arabidopsis thaliana) Defective in snRNA Processing 1 (DSP1) complex, composed of at least five subunits, is responsible for snRNA 3' maturation and is essential for plant development. Yet, it remains unclear how DSP1 complex subunits act together to process snRNAs. Here we show that DSP4, a member of the metallo-β-lactamase family, physically interacts with DSP1 through its β-Casp domain. Null dsp4-1 mutants have pleiotropic developmental defects, including impaired pollen development, and reduced pre-snRNA transcription and 3' maturation, resembling the phenotype of the dsp1-1 mutant. Interestingly, dsp1-1 dsp4-1 double mutants exhibit complete male sterility and reduced pre-snRNA transcription and 3' end maturation, unlike dsp1-1 or dsp4-1. In addition, Pol II occupancy at snRNA loci is lower in dsp1-1 dsp4-1 than in either single mutant. We also detected miscleaved pre-snRNAs in dsp1-1 dsp4-1, but not in dsp1-1 or dsp4-1. Taken together, these data reveal that DSP1 and DSP4 function is essential for pollen development, and that the two cooperatively promote pre-snRNA transcription and 3' end processing efficiency and accuracy. 
    more » « less
  2. U6 small nuclear RNA (U6 snRNA), a critical spliceosome component primarily found in the nucleus, plays a vital role in RNA splicing. Our previous study, using the simian immunodeficiency virus (SIV) macaque model, revealed an increase of U6 snRNA in plasma extracellular vesicles (EVs) in acute retroviral infection. Given the limited understanding of U6 snRNA dynamics across cells and EVs, particularly in SIV infection, this research explores U6 snRNA trafficking and its association with splicing proteins in the nucleus, cytoplasm, and EVs. We observed a redistribution of U6 snRNA from the nucleus to EVs post-infection, accompanied by distinct protein profile changes and alterations in nucleic acid metabolism and spliceosome pathways. In addition, U6 machinery proteins changed in cells and EVs in a contrasting manner. The redistribution of U6 and related proteins we observed could be part of a viral strategy to redirect host splicing machinery, suggesting that U6 may have regulatory roles and be part of retroviral infection signature. 
    more » « less
  3. Abstract BackgroundAlternative splicing of precursor mRNAs serves as a crucial mechanism to enhance gene expression plasticity for organismal adaptation. However, the precise regulation and function of alternative splicing in plant immune gene regulation remain elusive. ResultsHere, by deploying in-depth transcriptome profiling with deep genome coverage coupled with differential expression, differential alternative splicing, and differential transcript usage analysis, we reveal profound and dynamic changes in alternative splicing following treatment with microbial pattern flg22 peptides inArabidopsis. Our findings highlight RNA polymerase II C-terminal domain phosphatase-like 3 (CPL3) as a key regulator of alternative splicing, preferentially influencing the splicing patterns of defense genes rather than their expression levels. CPL3 mediates the production of a flg22-induced alternative splicing variant, diacylglycerol kinase 5α (DGK5α), which differs from the canonical DGK5β in its interaction with the upstream kinase BIK1 and subsequent phosphorylation, resulting in reduced flg22-triggered production of phosphatidic acid and reactive oxygen species. Furthermore, our functional analysis suggests that DGK5β, but not DGK5α, contributes to plant resistance against virulent and avirulent bacterial infections. ConclusionsThese findings underscore the role of CPL3 in modulating alternative splicing dynamics of defense genes and DGK5 isoform-mediated phosphatidic acid homeostasis, shedding light on the intricate mechanisms underlying plant immune gene regulation. 
    more » « less
  4. Abstract U12-type or minor introns are found in most multicellular eukaryotes and constitute ∼0.5% of all introns in species with a minor spliceosome. Although the biological significance for the evolutionary conservation of U12-type introns is debated, mutations disrupting U12 splicing cause developmental defects in both plants and animals. In human hematopoietic stem cells, U12 splicing defects disrupt proper differentiation of myeloid lineages and are associated with myelodysplastic syndrome, predisposing individuals to acute myeloid leukemia. Mutants in the maize ortholog of RNA binding motif protein 48 (RBM48) have aberrant U12-type intron splicing. Human RBM48 was recently purified biochemically as part of the minor spliceosome and shown to recognize the 5′ end of the U6atac snRNA. In this report, we use CRISPR/Cas9-mediated ablation of RBM48 in human K-562 cells to show the genetic function of RBM48. RNA-seq analysis comparing wild-type and mutant K-562 genotypes found that 48% of minor intron-containing genes have significant U12-type intron retention in RBM48 mutants. Comparing these results to maize rbm48 mutants defined a subset of minor intron-containing genes disrupted in both species. Mutations in the majority of these orthologous minor intron-containing genes have been reported to cause developmental defects in both plants and animals. Our results provide genetic evidence that the primary defect of human RBM48 mutants is aberrant U12-type intron splicing, while a comparison of human and maize RNA-seq data identifies candidate genes likely to mediate mutant phenotypes of U12-type splicing defects. 
    more » « less
  5. The density functional theory method is used to elucidate the elementary steps of Ni( ii )-catalyzed C(sp 2 )–H iodination with I 2 and substrates bearing N , N ′-bidentate directing centers, amide-oxazoline (AO) and 8-aminoquinoline (AQ). The relative stability of the lowest energy high- and low-spin electronic states of the catalyst and intermediates is found to be an important factor for all of the steps in the reaction. As a result, two-state reactivity for these systems is reported, where the reaction is initiated on the triplet surface and generates a high energy singlet nickelacycle. It is shown that the addition of Na 2 CO 3 base to the reaction mixture facilitates C–H activation. The presence of I 2 in the reaction provides the much needed driving force for the C–H activation and nickelacycle formation and ultimately reacts to form a new C–I bond through either a redox neutral electrophilic cleavage (EC) pathway or a one-electron reductive cleavage (REC) pathway. The previously proposed Ni( ii )/Ni( iv ) and homolytic cleavage pathways are found to be higher in energy. The nature of the substrate is found to have a large impact on the relative stability of the lowest electronic states and on the stability of the nickelacycle resulting from C–H activation. 
    more » « less