skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meta-Analytic Use of Balanced Identity Theory to Validate the Implicit Association Test
This meta-analysis evaluated theoretical predictions from balanced identity theory (BIT) and evaluated the validity of zero points of Implicit Association Test (IAT) and self-report measures used to test these predictions. Twenty-one researchers contributed individual subject data from 36 experiments (total N = 12,773) that used both explicit and implicit measures of the social–cognitive constructs. The meta-analysis confirmed predictions of BIT’s balance–congruity principle and simultaneously validated interpretation of the IAT’s zero point as indicating absence of preference between two attitude objects. Statistical power afforded by the sample size enabled the first confirmations of balance–congruity predictions with self-report measures. Beyond these empirical results, the meta-analysis introduced a within-study statistical test of the balance–congruity principle, finding that it had greater efficiency than the previous best method. The meta-analysis’s full data set has been publicly archived to enable further studies of interrelations among attitudes, stereotypes, and identities.  more » « less
Award ID(s):
1661285 1640889
PAR ID:
10180767
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Personality and Social Psychology Bulletin
ISSN:
0146-1672
Page Range / eLocation ID:
014616722091663
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Many clinical endpoint measures, such as the number of standard drinks consumed per week or the number of days that patients stayed in the hospital, are count data with excessive zeros. However, the zero‐inflated nature of such outcomes is sometimes ignored in analyses of clinical trials. This leads to biased estimates of study‐level intervention effect and, consequently, a biased estimate of the overall intervention effect in a meta‐analysis. The current study proposes a novel statistical approach, the Zero‐inflation Bias Correction (ZIBC) method, that can account for the bias introduced when using the Poisson regression model, despite a high rate of inflated zeros in the outcome distribution of a randomized clinical trial. This correction method only requires summary information from individual studies to correct intervention effect estimates as if they were appropriately estimated using the zero‐inflated Poisson regression model, thus it is attractive for meta‐analysis when individual participant‐level data are not available in some studies. Simulation studies and real data analyses showed that the ZIBC method performed well in correcting zero‐inflation bias in most situations. 
    more » « less
  2. The Implicit Association Test (IAT), like many behavioral measures, seeks to quantify meaningful individual differences in cognitive processes that are difficult to assess with approaches like self-reports. However, much like other behavioral measures, many IATs appear to show low test-retest reliability and typical scoring methods fail to quantify all of the decision-making processes that generate the overt task performance. Here, we develop a new modeling approach for IATs based on the geometric similarity representation (GSR) model. This model leverages both response times and accuracy on IATs to make inferences about representational similarity between the stimuli and categories. The model disentangles processes related to response caution, stimulus encoding, similarities between concepts and categories, and response processes unrelated to the choice itself. This approach to analyzing IAT data illustrates that the unreliability in IATs is almost entirely attributable to the methods used to analyze data from the task: GSR model parameters show test-retest reliability around .80-.90, on par with reliable self-report measures. Furthermore, we demonstrate how model parameters result in greater validity compared to the IAT D-score, Quad model, and simple diffusion model contrasts, predicting outcomes related to intergroup contact and motivation. Finally, we present a simple point-and-click software tool for fitting the model, which uses a pre-trained neural network to estimate best-fit parameters of the GSR model. This approach allows easy and instantaneous fitting of IAT data with minimal demands on coding or technical expertise on the part of the user, making the new model accessible and effective. 
    more » « less
  3. Abstract Implicit biases - differential attitudes towards members of distinct groups - are pervasive in human societies and create inequities across many aspects of life. Recent research has revealed that implicit biases are generally driven by social contexts, but not whether they are systematically influenced by the ways that humans self-organize in cities. We leverage complex system modeling in the framework of urban scaling theory to predict differences in these biases between cities. Our model links spatial scales from city-wide infrastructure to individual psychology to predict that cities that are more populous, more diverse, and less segregated are less biased. We find empirical support for these predictions in U.S. cities with Implicit Association Test data spanning a decade from 2.7 million individuals and U.S. Census demographic data. Additionally, we find that changes in cities’ social environments precede changes in implicit biases at short time-scales, but this relationship is bi-directional at longer time-scales. We conclude that the social organization of cities may influence the strength of these biases. 
    more » « less
  4. Implicit biases, expressed as differential treatment towards out-group members, are pervasive in human societies. These biases are often racial or ethnic in nature and create disparities and inequities across many aspects of life. Recent research has revealed that implicit biases are, for the most part, driven by social contexts and local histories. However, it has remained unclear how and if the regular ways in which human societies self-organize in cities produce systematic variation in implicit bias strength. Here we leverage extensions of the mathematical models of urban scaling theory to predict and test between-city differences in implicit racial biases. Our model comprehensively links scales of organization from city-wide infrastructure to individual psychology to quanti-tatively predict that cities that are (1) more populous, (2) more diverse, and (3) less segregated have lower levels of implicit biases. We find broad empirical support for each of these predictions in U.S. cities for data spanning a decade of racial implicit association tests from millions of individuals. We conclude that the organization of cities strongly drives the strength of implicit racial biases and provides potential systematic intervention targets for the development and planning of more equitable societies. 
    more » « less
  5. null (Ed.)
    Propensity score methods account for selection bias in observational studies. However, the consistency of the propensity score estimators strongly depends on a correct specification of the propensity score model. Logistic regression and, with increasing popularity, machine learning tools are used to estimate propensity scores. We introduce a stacked generalization ensemble learning approach to improve propensity score estimation by fitting a meta learner on the predictions of a suitable set of diverse base learners. We perform a comprehensive Monte Carlo simulation study, implementing a broad range of scenarios that mimic characteristics of typical data sets in educational studies. The population average treatment effect is estimated using the propensity score in Inverse Probability of Treatment Weighting. Our proposed stacked ensembles, especially using gradient boosting machines as a meta learner trained on a set of 12 base learner predictions, led to superior reduction of bias compared to the current state-of-the-art in propensity score estimation. Further, our simulations imply that commonly used balance measures (averaged standardized absolute mean differences) might be misleading as propensity score model selection criteria. We apply our proposed model - which we call GBM-Stack - to assess the population average treatment effect of a Supplemental Instruction (SI) program in an introductory psychology (PSY 101) course at San Diego State University. Our analysis provides evidence that moving the whole population to SI attendance would on average lead to 1.69 times higher odds to pass the PSY 101 class compared to not offering SI, with a 95% bootstrap confidence interval of (1.31, 2.20). 
    more » « less