Using sunlight to produce hydrogen gas via photocatalytic water splitting is highly desirable for green energy harvesting and sustainability. In this work, Mn 2+ doped 1-dimensional (1D) CdS nanorods (NRs) with Pt tips ( i.e. , 1D Mn:CdS-Pt NRs) were synthesized for photocatalytic water splitting to generate hydrogen gas. The incorporation of Mn 2+ dopants inside the 1D CdS NRs with a significantly longer lifetime (∼ms) than that of host excitons (∼ns) facilitates charge separation; the electron transfer to metal Pt tips leads to enhanced photocatalytic activity in water splitting redox reactions. The as-synthesized Mn 2+ doped CdS NR-based photocatalyst generated an order of magnitude greater yield of hydrogen gas compared to the undoped CdS NR-based photocatalyst. The enhanced charge transport from the long lifetime excited state of Mn 2+ dopants in light harvesting semiconductor nanomaterials presents a new opportunity to increase the overall photocatalytic performance.
more »
« less
Solar-driven tandem photoredox nickel-catalysed cross-coupling using modified carbon nitride
Nickel-catalysed aryl amination and etherification are driven with sunlight using a surface-modified carbon nitride to extend the absorption of the photocatalyst into a wide range of the visible region. In contrast to traditional homogeneous photochemical methodologies, the lower cost and higher recyclability of the metal-free photocatalyst, along with the use of readily available sunlight, provides an efficient and sustainable approach to promote nickel-catalysed cross-couplings.
more »
« less
- Award ID(s):
- 1855531
- PAR ID:
- 10180797
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 11
- Issue:
- 28
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 7456 to 7461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A mechanistic study on the α-arylation of N -alkylbenzamides catalyzed by a dual nickel/photoredox system using aryl bromides is reported herein. This study elucidates the origins of site-selectivity of the transformation, which is controlled by the generation of a hydrogen atom transfer (HAT) agent by a photocatalyst and bromide ions in solution. Tetrabutylammonium bromide was identified as a crucial additive and source of a potent HAT agent, which led to increases in yields and a lowering of the stoichiometries of the aryl bromide coupling partner. NMR titration experiments and Stern–Volmer quenching studies provide evidence for complexation to and oxidation of bromide by the photocatalyst, while elementary steps involving deprotonation of the N -alkylbenzamide or 1,5-HAT were ruled out through mechanistic probes and kinetic isotope effect analysis. This study serves as a valuable tool to better understand the α-arylation of N -alkylbenzamides, and has broader implications in halide-mediated C–H functionalization reactions.more » « less
-
If hydrogen evolution photocatalysis are to be deployed at industrial scale, the synthesis of these photocatalytic materials must be both economically and environmentally scalable. This suggests that we must move towards green synthesis of earth-abundant photocatalysts while also maintaining high catalytic performance. Herein, we present the enzymatically driven, aqueous phase, low temperature, synthesis of an earth-abundant nickel sulfide (Ni x S y ) hydrogen evolution cocatalyst, and its integration into a CdS/Ni x S y heterostructured photocatalyst. This resulting photocatalyst provides hydrogen evolution rates (10 500 μmol h −1 g −1 ) comparable to photocatalysts prepared by more traditional routes. Furthermore, the Ni x S y is demonstrated to provide similar activity enhancement to the more traditional, but also more expensive platinum cocatalysts. To achieve this result, we carefully studied and engineered the synthesis environment to maintain enzyme activity towards HS − production while sustaining a sufficient concentration of free Ni 2+ in solution to enable reaction and formation of Ni x S y . Ultimately, this work provides a methodology to control the coordination of metal precursors in low temperature, aqueous systems to allow for precipitation of catalytically active materials and demonstrates the viability of green synthesis pathways for photocatalysts.more » « less
-
Robust earth-abundant transition metal-based photocatalysts are needed for photocatalytic CO2 reduction. A series of six Ni(II) complexes have been synthesized with a tridentate CNC pincer ligand composed of two imidazole or benzimidazole derived N-heterocyclic carbene (NHC) rings and a pyridyl ring with different R substituents (R = OMe, Me, H) para to N of the pyridine ring. These complexes have been characterized using spectroscopic, analytic, and crystallographic methods. The electrochemical properties of all complexes were studied by cyclic voltammetry under N2 and CO2 atmospheres. Photocatalytic reduction of CO2 to CO and HCO2– was analyzed using all the complexes in the presence and absence of an external photosensitizer (PS). All of these complexes are active as photocatalysts for CO2 reduction with and without the presence of an external PS with appreciable turnover numbers (TON) for formate (HCO2–) production and typically lower amounts of CO. Notably, all Ni(II) CNC-pincer complexes in this series are also active as self-sensitized photocatalysts. Complex 4Me with a benzimidazole derived CNC pincer ligand was found to be the most active self-sensitized photocatalyst. Ultrafast transient absorption spectroscopy (TAS) experiments and computational studies were performed to understand the mechanism of these catalysts. Whereas sensitized catalysis involves halide loss to produce more active complexes, self-sensitized catalysis requires some halide to remain coordinated to allow for a favorable electron transfer between the excited nickel complex and the sacrificial electron donor. This then allows the nickel complex to undergo CO2 reduction catalysis via NiI or Ni0 catalytic cycles. The two active species (NiI¬ and Ni0) demonstrate distinct reactivity and selectivity which influences the formation of CO vs. formate as the product.more » « less
-
Synthetic methods that utilise iron to facilitate C–H bond activation to yield new C–C and C–heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C–H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C–H activation/functionalisation systems which utilise electrophiles to establish C–C and C–heteroatom bonds has not been determined. The present study focuses on an iron-catalysed C–H allylation system, which utilises allyl chlorides as electrophiles to establish a C–allyl bond. Freeze-trapped inorganic spectroscopic methods ( 57 Fe Mössbauer, EPR, and MCD) are combined with correlated reaction studies and kinetic analyses to reveal a unique and rapid reaction pathway by which the allyl electrophile reacts with a C–H activated iron intermediate. Supporting computational analysis defines this novel reaction coordinate as an inner-sphere radical process which features a partial iron–bisphosphine dissociation. Highlighting the role of the bisphosphine in this reaction pathway, a complementary study performed on the reaction of allyl electrophile with an analogous C–H activated intermediate bearing a more rigid bisphosphine ligand exhibits stifled yield and selectivity towards allylated product. An additional spectroscopic analysis of an iron-catalysed C–H amination system, which incorporates N -chloromorpholine as the C–N bond-forming electrophile, reveals a rapid reaction of electrophile with an analogous C–H activated iron intermediate consistent with the inner-sphere radical process defined for the C–H allylation system, demonstrating the prevalence of this novel reaction coordinate in this sub-class of iron-catalysed C–H functionalisation systems. Overall, these results provide a critical mechanistic foundation for the rational design and development of improved systems that are efficient, selective, and useful across a broad range of C–H functionalisations.more » « less
An official website of the United States government

