skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of charge-transfer excitons in a transition metal dichalcogenide heterostructure
Charge-transfer excitons are formed by photoexcited electrons and holes following charge transfer across a heterojunction. They are important quasiparticles for optoelectronic applications of semiconducting heterostructures. The newly developed two-dimensional heterostructures provide a new platform to study these excitons. We report spatially and temporally resolved transient absorption measurements on the dynamics of charge-transfer excitons in a MoS 2 /WS 2 /MoSe 2 trilayer heterostructure. We observed a non-classical lateral diffusion process of charge-transfer excitons with a decreasing diffusion coefficient. This feature suggests that hot charge-transfer excitons with large kinetic energies are formed and their cooling process persists for about 100 ps. The long energy relaxation time of excitons in the trilayer compared to its monolayer components is attributed to the reduced carrier and phonon scattering due to the dielectric screening effect in the trilayer. Our results help develop an in-depth understanding of the dynamics of charge-transfer excitons in two-dimensional heterostructures.  more » « less
Award ID(s):
1505852
PAR ID:
10180843
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
12
Issue:
15
ISSN:
2040-3364
Page Range / eLocation ID:
8485 to 8492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of the energy valley on interlayer charge transfer in transition metal dichalcogenide (TMD) heterostructures is studied by transient absorption spectroscopy and density functional theory. First-principles calculations confirm that the Λmin valley in the conduction band of few-layer WSe2 evolves from above its K valley in the monolayer (1L) to below it in 4L. Heterostructure samples of 𝑛⁢L−WSe2/1⁢L−MoS2, where 𝑛=1,2,3, and 4, are obtained by mechanical exfoliation and dry transfer. Photoluminescence spectroscopy reveals a thickness-dependent WSe2 band structure and efficient interlayer charge transfer. Transient absorption measurements show that the electron transfer time from the Λmin valley of 4L WSe2 to the K valley of MoS2 is on the order of 30 ps. This process is much slower than the K-K charge transfer in 1L/1L TMD heterostructures. The momentum-indirect interlayer excitons formed after charge transfer have lifetimes >1 ns. 
    more » « less
  2. Abstract Recent experiments observed significant energy transfer in type-II van der Waals (vdW) heterostructures, such as WS 2 /MoSe 2 , which is surprising due to their staggered band alignment and weak spectral overlap. In this work, we carry out first-principles calculations to shed light on energy and charge transfer in WS 2 /MoSe 2 heterostructure. Incorporating excitonic effect in nonadiabatic electronic dynamics, our first-principles calculations uncover a two-step process in competing energy and charge transfer, unravel their relative efficiencies and explore the means to control their competition. While both Dexter and Förster mechanisms can be responsible for energy transfer, they are shown to operate at different conditions. The excitonic effect is revealed to drive ultrafast energy and charge transfer in type-II WS 2 /MoSe 2 heterostructure. Our work provides a comprehensive picture of exciton dynamics in vdW heterostructures and paves the way for rational design of novel vdW heterostructures for optoelectronic and photovoltaic applications. 
    more » « less
  3. Vertically stacked van der Waals (vdW) heterostructures exhibit unique electronic, optical, and thermal properties that can be manipulated by twist-angle engineering. However, the weak phononic coupling at a bilayer interface imposes a fundamental thermal bottleneck for future two-dimensional devices. Using ultrafast electron diffraction, we directly investigated photoinduced nonequilibrium phonon dynamics in MoS2/WS2at 4° twist angle and WSe2/MoSe2heterobilayers with twist angles of 7°, 16°, and 25°. We identified an interlayer heat transfer channel with a characteristic timescale of ~20 picoseconds, about one order of magnitude faster than molecular dynamics simulations assuming initial intralayer thermalization. Atomistic calculations involving phonon-phonon scattering suggest that this process originates from the nonthermal phonon population following the initial interlayer charge transfer and scattering. Our findings present an avenue for thermal management in vdW heterostructures by tailoring nonequilibrium phonon populations. 
    more » « less
  4. Excitons can be trapped by moiré potentials in van der Waals (vdW) heterostructures, forming ordered arrays of quantum dots. Excitons can also be trapped by defect potentials as single photon emitters. While the moiré and defect potentials in vdW heterostructures have been studied separately, their interplay remains largely unexplored. Here, we perform first-principles calculations to elucidate the interplay of the two potentials in determining the optoelectronic properties of twisted MoS 2 /WS 2 heterobilayers. The binding energy, charge density, localization, and hybridization of the moiré excitons can be modulated by the competition and cooperation of the two potentials. Their interplay can also be tuned by vertical electric fields, which can either de-trap the excitons or strongly localize them. One can further tailor the interplay of the two potentials via defect engineering to create one-dimensional exciton lattices with tunable orientations. Our work establishes defect engineering as a promising strategy to realize on-demand optoelectronic responses. 
    more » « less
  5. The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS 2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS 2 -multilayer graphite and bulk MoS 2 -multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron–hole pairs into monolayer or bulk MoS 2 . The transfer of these photocarriers to the adjacent multilayer graphite was time resolved by measuring the differential reflection of a probe pulse. We found that photocarriers injected into monolayer MoS 2 transfer to graphite on an ultrafast time scale shorter than 400 fs. Such an efficient charge transfer is key to the development of high performance optoelectronic devices with MoS 2 as the light absorbing layer and graphite as electrodes. The absorption coefficient of monolayer MoS 2 can be controlled by the carriers in graphite. This process can be used for interlayer coupling and control. In a bulk MoS 2 -graphite heterostructure, the photocarrier transfer time is about 220 ps, due to the inefficient interlayer charge transport in bulk MoS 2 . These results provide useful information for developing optoelectronic devices based on MoS 2 -graphite heterostructures. 
    more » « less