skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From theory to action: developing and evaluating learning analytics for learning design
The effectiveness of using learning analytics for learning design primarily depends upon two concepts: grounding and alignment. This is the primary conjecture for the study described in this paper. In our design-based research study, we design, test, and evaluate teacher-facing learning analytics for an online inquiry science unit on global climate change. We design our learning analytics in accordance with a socioconstructivism-based pedagogical framework,called Knowledge Integration, and the principles of learning analytics Implementation Design. Our methodology for the design process draws upon the principle of the Orchestrating for Learning Analytics framework to engage stakeholders (i.e. teachers, researchers, and developers). The resulting learning analytics were aligned to unit activities that engaged students in key aspects of the knowledge integration process. They provided teachers with actionable insight into their students’ understanding at critical junctures in the learning process. We demonstrate the efficacy of the learning analytics in supporting the optimization of the unit’s learning design. We conclude by synthesizing the principles that guided our design process into a framework for developing and evaluating learning analytics for learning design.  more » « less
Award ID(s):
1813713
PAR ID:
10180912
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
LAK '20: Proceedings of the Tenth International Conference on Learning Analytics & Knowledge
Page Range / eLocation ID:
569 - 578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teachers are currently facing a major instructional challenge, namely, supporting students to meet the three dimensional learning goals of the Next Generation Science Standards without adequate curriculum materials to do so. In this paper, we report the design and outcomes of professional development activities that support teachers and researchers to collaboratively customize Web-based Inquiry Science Environment (WISE) units to help students develop coherent science knowledge. The WISE units and professional development activities were developed using the Knowledge Integration (KI) Framework. We show that the KI framework functioned as an effective scaffold to support teachers in modifying their teaching practice to make curriculum customizations that are evidence-based and aligned with a theory of learning. We discuss how our study results informed the design of an online curriculum customization and implementation interface and offer the principles of the KI framework as design principles for the development of other collaborative professional development endeavors. 
    more » « less
  2. Abstract This paper provides an experience report on a co‐design approach with teachers to co‐create learning analytics‐based technology to support problem‐based learning in middle school science classrooms. We have mapped out a workflow for such applications and developed design narratives to investigate the implementation, modifications and temporal roles of the participants in the design process. Our results provide precedent knowledge on co‐designing with experienced and novice teachers and co‐constructing actionable insight that can help teachers engage more effectively with their students' learning and problem‐solving processes during classroom PBL implementations. Practitioner notesWhat is already known about this topicSuccess of educational technology depends in large part on the technology's alignment with teachers' goals for their students, teaching strategies and classroom context.Teacher and researcher co‐design of educational technology and supporting curricula has proven to be an effective way for integrating teacher insight and supporting their implementation needs.Co‐designing learning analytics and support technologies with teachers is difficult due to differences in design and development goals, workplace norms, and AI‐literacy and learning analytics background of teachers.What this paper addsWe provide a co‐design workflow for middle school teachers that centres on co‐designing and developing actionable insights to support problem‐based learning (PBL) by systematic development of responsive teaching practices using AI‐generated learning analytics.We adapt established human‐computer interaction (HCI) methods to tackle the complex task of classroom PBL implementation, working with experienced and novice teachers to create a learning analytics dashboard for a PBL curriculum.We demonstrate researcher and teacher roles and needs in ensuring co‐design collaboration and the co‐construction of actionable insight to support middle school PBL.Implications for practice and/or policyLearning analytics researchers will be able to use the workflow as a tool to support their PBL co‐design processes.Learning analytics researchers will be able to apply adapted HCI methods for effective co‐design processes.Co‐design teams will be able to pre‐emptively prepare for the difficulties and needs of teachers when integrating middle school teacher feedback during the co‐design process in support of PBL technologies. 
    more » « less
  3. This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  4. null (Ed.)
    This article describes a professional development (PD) model, the CT- Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT- Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students. 
    more » « less
  5. null (Ed.)
    Over the last 10 years, learning analytics have provided educators with both dashboards and tools to understand student behaviors within specific technological environments. However, there is a lack of work to support educators in making data-informed design decisions when designing a blended course and planning appropriate learning activities. In this paper, we introduce knowledge-based design analytics that uncover facets of the learning activities that are being created. A knowledge-based visualization is integrated into edCrumble, a (blended) learning design authoring tool. This new approach is explored in the context of a higher education programming course, where instructors design labs and home practice sessions with online smart learning content on a weekly basis. We performed a within-subjects user study to compare the use of the design tool both with and without visualization. We studied the differences in terms of cognitive load, controllability, confidence and ease of choice, design outcomes, and user actions within the system to compare both conditions with the objective of evaluating the impact of using design analytics during the decision-making phase of course design. Our results indicate that the use of a knowledge-based visualization allows the teachers to reduce the cognitive load (especially in terms of mental demand) and that it facilitates the choice of the most appropriate activities without affecting the overall design time. In conclusion, the use of knowledge-based design analytics improves the overall learning design quality and helps teachers avoid committing design errors. 
    more » « less