skip to main content


Title: Ingestible Sensors and Sensing Systems for Minimally Invasive Diagnosis and Monitoring: The Next Frontier in Minimally Invasive Screening
Award ID(s):
1926793 1840468
NSF-PAR ID:
10180935
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Sensors
Volume:
5
Issue:
4
ISSN:
2379-3694
Page Range / eLocation ID:
891 to 910
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies privacy in the context of decision-support queries that classify objects as either true or false based on whether they satisfy the query. Mechanisms to ensure privacy may result in false positives and false negatives. In decision-support applications, often, false negatives have to remain bounded. Existing accuracy-aware privacy preserving techniques cannot directly be used to support such an accuracy requirement and their naive adaptations to support bounded accuracy of false negatives results in significant privacy loss depending upon distribution of data. This paper explores the concept of minimally-invasive data exploration for decision support that attempts to minimize privacy loss while supporting bounded guarantee on false negatives by adaptively adjusting privacy based on data distribution. Our experimental results show that the MIDE algorithms perform well and are robust over variations in data distributions. 
    more » « less
  2. Current commercially available robotic minimally invasive surgery (RMIS) platforms provide no haptic feedback of tool interactions with the surgical environment. As a consequence, novice robotic surgeons must rely exclusively on visual feedback to sense their physical interactions with the surgical environment. This technical limitation can make it challenging and time-consuming to train novice surgeons to proficiency in RMIS. Extensive prior research has demonstrated that incorporating haptic feedback is effective at improving surgical training task performance. However, few studies have investigated the utility of providing feedback of multiple modalities of haptic feedback simultaneously (multi-modality haptic feedback) in this context, and these studies have presented mixed results regarding its efficacy. Furthermore, the inability to generalize and compare these mixed results has limited our ability to understand why they can vary significantly between studies. Therefore, we have developed a generalized, modular multi-modality haptic feedback and data acquisition framework leveraging the real-time data acquisition and streaming capabilities of the Robot Operating System (ROS). In our preliminary study using this system, participants complete a peg transfer task using a da Vinci robot while receiving haptic feedback of applied forces, contact accelerations, or both via custom wrist-worn haptic devices. Results highlight the capability of our system in running systematic comparisons between various single and dual-modality haptic feedback approaches. 
    more » « less
  3. null (Ed.)
    Minimally invasive surgery is of high interest for interventional medicine since the smaller incisions can lead to less pain and faster recovery for patients. The current standard-of-care involves a range of affordable, manual, hand-held rigid tools, whose limited dexterity and range of adoptable shapes can prevent access to confined spaces. In contrast, recently developed roboticized tools that can provide increased accessibility and dexterity to navigate and perform complex tasks often come at the cost of larger, heavier, and grounded devices that are teleoperated, posing a new set of challenges. In this article, we propose a new hand-held concentric tube robot with an associated position control method that has the dexterity and precision of large roboticized devices, while maintaining the footprint of a traditional hand-held tool. The device shows human-in-the-loop control performance that meets the requirements of the targeted application, percutaneous abscess drainage. In addition, a small user study illustrates the advantage of combining rigid body motion of the device with more precise motions of the tip, thus showing the potential to bridge the gap between traditional hand-held tools and grounded robotic devices. 
    more » « less